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Measurement Invariance

• Measurement invariance: the same construct 
is being measured across groups (or across 
time). 

• This is prerequisite to comparing groups but 
rarely tested.



“real” vs. Self-report
• A professor teaches a course and wants to know if high 

school GPA is a significant predictor of grades in the course.
• With respect to High school GPA, should a professor asks for 

the official data from IR or can the professor rely on 
students’ self-report HS GPA?

• This depends on the relationship between the official and 
self-reported GPA…
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Confirmatory Factor Analysis (CFA)
• CFA allows us to examine the relationship between latent and observed 

variables.
• For example, in NSSE, Higher-order learning is a latent factor measured by 

four items.

During the current school year, how much has your 
coursework emphasized the following:

1. Applying facts, theories, or methods to 
practical problems or new situations

2. Analyzing an idea, experience, or line of 
reasoning in depth by examining its parts

3. Evaluating a point of view, decision, or 
information source

4. Forming a new idea or understanding 
from various pieces of information

y2

e2

y3

e3

y1

e1

Higher-order 
Learning

y4

e4



Confirmatory Factor Analysis (CFA)
• CFA allows us to examine the relationship between latent and observed

variables.
– Observed – directly measured.
– Latent – not directly measured but inferred from the observed variables.

latent

observed

1

Regression or loading

(co)variance

Vector of 1s
(used for intercepts)

• A path diagram is a popular way to 
describe your theory (though it may 
not be accurate)



Simple regression

y = β0 + β1x + e
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One factor model
y1 = μ1 + λ1F + e1
y2 = μ2 + λ2F + e2
y3 = μ3 + λ3F + e3
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Model evaluation
• RMSEA: < 0.05 = good, .05 to .08 = acceptable
• Comparative Fit Index (CFI): > 0.95 = good, > 0.90 = acceptable
• Tucker-Lewis Index (TLI): > 0.95 = good 
• SRMR: < 0.08 good
• Chi-square: this can be used compare models, if they are nested
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Multiple-group CFA
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Levels of MI

1. Configural invariance: same factor loading 
pattern across groups.

2. Metric invariance: factor loadings equal 
across groups (aka weak invariance).

3. Scalar invariance: loadings & intercept 
equal across groups (aka strong invariance).

4. Strict invariance: residual variances equal 
across groups.
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Configural invariance
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Metric invariance (weak)
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Metric invariance (weak)

• Are factor loadings equal?

• Factor loadings, like regression weights, 
shows us the relationship between a 
latent factor and observed variables.

• Compare the fit of the metric invariance 
model with the fit of the configural
model using a chi-square difference test. 

• If not significantly different, the factor 
loadings are invariant.

• This suggests that the same construct is 
being measured. 



Scalar invariance (strong)
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Scalar invariance (strong)
• Are factor loadings AND intercepts 

equal?

• Compare the fit of the scalar invariance 
model with the fit of the metric 
invariance model. 

• If this model is significantly worse than 
the previous one, the intercepts are not 
equals, suggesting that one group tend to 
give higher or lower item response.



Strict invariance
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Strict invariance

• Are factor loadings AND intercepts AND residual variance equal?

• Compare the fit of the strict invariance model with the fit of the scalar 
invariance model. 

• The strict invariance model is highly constrained model and often rejected in 
practice.



Software

• Mplus, SAS (proc calis), SPSS (AMOS), STATA 
(SEM builder), SmartPLS, LISREL, Onyx, EQS, 
etc.

• R
– OpenMx
– sem
– lavaan
– semTools



Software Options: R and RStudio



Reading in data

library(foreign) #needed to read in SPSS data.
library(lavaan) #loading the lavaan package

#reading in the SPSS data
data <- read.spss(“C:/…/data.sav", use.value.labels = F, to.data.frame = T)

#inspect data
head(data)
str(data)
summary(data)
objects(data)
View(data)



lavaan syntax

# specify the model
model <- ' y  ~ x1 + x2 + x3 '

# fit the model
fit <- cfa(model, data)

# display summary output
summary(fit, fit.measures=TRUE)

Type Operator definitions
Latent variable =~ Is measured by

Regression ~ Is regressed on

(co)variance ~~ Is correlated with

Intercept ~1 intercept

yx2

x1

x3



lavaan syntax

# specify the model
model <- ' y1  ~ x1 + x2 + x3

y2  ~ x1 + x2 + x3 '

# fit the model
fit <- cfa(model, data)

# display summary output
summary(fit, fit.measures=TRUE)

Type Operator definitions
Latent variable =~ Is measured by

Regression ~ Is regressed on

(co)variance ~~ Is correlated with

Intercept ~1 intercepty1
x2

x1

x3

y2



lavaan syntax

# specify the model
model <- ' x3  ~ x1 + x2

x4  ~ x1 + x2 + x3
x1 ~~ x2 '

# fit the model
fit <- cfa(model, data)

# display summary output
summary(fit, fit.measures=TRUE)

Type Operator definitions
Latent variable =~ Is measured by

Regression ~ Is regressed on

(co)variance ~~ Is correlated with

Intercept ~1 intercept

x2

x1

x3 x4



# specify the model
HS.model <- ' visual  =~ x1 + x2 + x3      

textual =~ x4 + x5 + x6
speed   =~ x7 + x8 + x9 '

# fit the model
fit <- cfa(HS.model, data)

# display summary output
summary(fit, fit.measures=TRUE)

From: http://lavaan.ugent.be/tutorial/cfa.html

Type Operator definitions
Latent variable =~ Is measured by

Regression ~ Is regressed on

(co)variance ~~ Is correlated with

Intercept ~1 intercept

lavaan syntax



Illustration using NSSE

Sample: two cohorts of first-time freshmen who took 
NSSE, 2014 and 2016 at Cal State Fullerton.

Latent Variable: Learning Strategies 
Three indicator items (1 = never, 4 = very often)
• LSreading: Identified key information from reading assignments
• LSnotes: Reviewed your notes after class
• LSsummary: Summarized what you learned in class or from course 

materials

Grouping Variable: URM (URM vs. non-URM)
LSnotes

e2

LSsummary

e3

LSreading

e1

Learning 
Strategies

1



Illustration of MI

#specify your model
model <- ‘L =~  LSreading +  LSnotes +  LSsummary’

#fit your model
modelresult <- cfa(model, data, missing = ‘ML’)

#display model
summary(modelresult ,fit.measures=TRUE)
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lavaan

LSnotes
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LSsummary

e3

LSreading
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1.000 1.650 1.841

0.409 0.340 0.239

0.172

model <- ‘LS =~  LSreading +  LSnotes +  LSsummary’

1

3.004 2.877 2.693



lavaan

LSnotes

e2

LSsummary

e3

LSreading

e1

L

0.415 0.684 0.764

0.409 0.340 0.239

1.000

model <- ‘LS =~  NA*LSreading +  LSnotes +  Lssummary
LS ~~ 1*LS’

1

3.004 2.877 2.693



Configural invariance
cfa(model, data, group = 'URM', missing = 'ML')

Non-URM (n=761) URM (n=697)



Metric invariance
cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings'))

Non-URM (n=761) URM (n=697)



Compare configural vs metric

config_out <- cfa(model, data, group = 'URM', missing = 'ML')
metric_out <- cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings'))

lavTestLRT(config_out, metric_out)

Not sig.



Scalar invariance
cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts'))

Non-URM (n=761) URM (n=697)



Compare metric vs scalar

scalar_out <- cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts'))

lavTestLRT(metric_out, scalar_out)

Not sig.



Non-URM (n=761) URM (n=697)

Strict invariance
cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts', 'residuals'))



Compare scalar vs strict

strict_out <- cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts', 'residuals'))

lavTestLRT(scalar_out, strict_out)

Not sig.



Alternative: semTools
library(semTools)

model <- 'L =~ LSreading +  LSnotes +  LSsummary‘

measurementInvariance(model, data, strict= TRUE, group = "URM", missing = 'ML')



Issues

• What if the measurement is non-invariant? (Sass, 
2011). 
– Use only invariant items.
– Allows parameters of non-invariant items to vary 

across groups (partial measurement invariance model)
– Use all the items if the extent of noninvariance is 

small.
– avoid using the scale

• Are survey items considered continuous or 
ordinal?
– lavaan can model ordinal data.



Issues
scalar_out <- cfa(model, data = data, 

group.equal = c("loadings", "intercepts"),
group.partial = c('L =~ LSnotes', 'LSnotes ~ 1'),
group = "URM", missing = 'ML')



Issues
library(semTools)

model <- 'L =~ LSreading +  LSnotes +  LSsummary‘

measurementInvarianceCat(model, data = data, strict = T, group = "URM", 
ordered = c("LSreading","LSnotes","LSsummary"))



Optional: Plotting the model
library(semPlot)

semPaths(config_out)
semPaths(config_out, “est”) # if you want add estimates to the figure.



Summary

• Measurement invariance is required for 
accurate assessment and evaluation.

• Multiple Group CFA is the most widely used 
tool for testing measurement invariance.

• Testing for measurement invariance in R is 
relatively simple.
– A lot of examples online.



End

Question?
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