

Is my survey biased? The importance of measurement invariance

Yusuke Kuroki Sunny Moon November 9th, 2017

Measurement Invariance

- Measurement invariance: the same construct is being measured across groups (or across time).
- This is prerequisite to comparing groups but rarely tested.

"real" vs. Self-report

- A professor teaches a course and wants to know if high school GPA is a significant predictor of grades in the course.
- With respect to High school GPA, should a professor asks for the official data from IR or can the professor rely on students' self-report HS GPA?
- This depends on the relationship between the official and self-reported GPA...

equal slopes and intercepts

equal slopes, diff. intercepts

diff slopes, equal intercepts

diff. slopes, diff. intercepts

Confirmatory Factor Analysis (CFA)

- CFA allows us to examine the relationship between latent and observed variables.
- For example, in NSSE, *Higher-order learning* is a latent factor measured by four items.

During the current school year, how much has your coursework emphasized the following:

- 1. Applying facts, theories, or methods to practical problems or new situations
- 2. Analyzing an idea, experience, or line of reasoning in depth by examining its parts
- 3. Evaluating a point of view, decision, or information source
- 4. Forming a new idea or understanding from various pieces of information

Confirmatory Factor Analysis (CFA)

- CFA allows us to examine the relationship between *latent* and *observed* variables.
 - Observed directly measured.
 - Latent not directly measured but inferred from the observed variables.

Simple regression

$$y = \beta_0 + \beta_1 x + e$$

One factor model

Model evaluation

- RMSEA: < 0.05 = good, .05 to .08 = acceptable
- Comparative Fit Index (CFI): > 0.95 = good, > 0.90 = acceptable
- Tucker-Lewis Index (TLI): > 0.95 = good
- SRMR: < 0.08 good
- Chi-square: this can be used compare models, if they are nested

Multiple-group CFA

This allows simultaneously estimate parameters for multiple groups

Levels of MI

- 1. Configural invariance: same factor loading pattern across groups.
- 2. Metric invariance: factor loadings equal across groups (aka weak invariance).
- 3. Scalar invariance: loadings & intercept equal across groups (aka strong invariance).

Strong

4. Strict invariance: residual variances equal across groups.

Configural invariance

Parameters are free to vary across groups

 λ_6

Х3

 e_6

 μ_6

Metric invariance (weak)

Factor loadings are held equal across groups

equal slopes and intercepts

equal slopes, diff. intercepts

diff slopes, equal intercepts

diff. slopes, diff. intercepts

Metric invariance (weak)

• Are factor loadings equal?

- Factor loadings, like regression weights, shows us the relationship between a latent factor and observed variables.
- Compare the fit of the metric invariance model with the fit of the configural model using a chi-square difference test.
- If not significantly different, the factor loadings are invariant.
- This suggests that the same construct is being measured.

Scalar invariance (strong)

Factor loadings and intercepts are held equal across groups

 λ_3

Х3

 e_6

Scalar invariance (strong)

- Are factor loadings AND intercepts equal?
- Compare the fit of the scalar invariance model with the fit of the metric invariance model.
- If this model is significantly worse than the previous one, the intercepts are not equals, suggesting that one group tend to give higher or lower item response.

Latent Factor

Strict invariance

Factor loadings, intercepts and residuals are held equal across groups

Strict invariance

- Are factor loadings AND intercepts AND residual variance equal?
- Compare the fit of the strict invariance model with the fit of the scalar invariance model.
- The strict invariance model is highly constrained model and often rejected in practice.

Software

- Mplus, SAS (proc calis), SPSS (AMOS), STATA (SEM builder), SmartPLS, LISREL, Onyx, EQS, etc.
- R
 - OpenMx
 - sem
 - lavaan
 - semTools

Software Options: R and RStudio

File Edit Code View Plots Session Build Debug Profile Tools Help			- o ×
🖭 • 😹 • 🛱 🖓 🖓 (# Griertertuntter 👘 🗒 • Addins •			I Project: (None) •
O Dealledt x	-0	Console of (2)	=0
 C Source on Sare Q Z + C The arry(Tavaan) #Toading the Tavaan package 	Let Run 20 20 Source - ≥	R version 3.4.1 (2017-06-10) "single candle" Copyright (C) 2017 The R-Foundation for statistical Computing Platform: \$86.64-064-ingn327.646 (64-bit)	
<pre>4 #reading in the SPES data 5 data <- read.spss("c://data.sav", use.value.labels = F, to.data.frame = T) 7 1 7 1</pre>		R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type "license()" or "licence()" for distribution details.	
		R is a collaborative project with many contributors. Type "contributors])" for more information and "citation()" on how to cite a or R packages in publications.	
		Type 'demo()' for some demos, 'help()' for on-line help, or 'help,start()' for an HTML browser interface to help. Type 'q()' to quit R.	
The loop of	B Raine a		
Environment History	60	Files Plots Packages Help Viewer	00

Reading in data

library(foreign) #needed to read in SPSS data. library(lavaan) #loading the lavaan package

#reading in the SPSS data
data <- read.spss("C:/.../data.sav", use.value.labels = F, to.data.frame = T)</pre>

#inspect data
head(data)
str(data)
summary(data)
objects(data)
View(data)

lavaan syntax

Туре	Operator	definitions
Latent variable	=~	Is measured by
Regression	~	Is regressed on
(co)variance	~~	Is correlated with
Intercept	~1	intercept

specify the model
model <- ' y ~ x1 + x2 + x3 '</pre>

fit the model
fit <- cfa(model, data)</pre>

lavaan syntax

Туре	Operator	definitions
Latent variable	=~	Is measured by
Regression	~	Is regressed on
(co)variance	~~	Is correlated with
Intercept	~1	intercept

specify the model model <- ' y1 \sim x1 + x2 + x3 y2 \sim x1 + x2 + x3 '

fit the model
fit <- cfa(model, data)</pre>

lavaan syntax

Туре	Operator	definitions
Latent variable	=~	Is measured by
Regression	~	Is regressed on
(co)variance	~~	Is correlated with
Intercept	~1	intercept

fit the model
fit <- cfa(model, data)</pre>

Туре	Operator	definitions
Latent variable	=~	Is measured by
Regression	~	Is regressed on
(co)variance	~~	Is correlated with
Intercept	~1	intercept

specify the model

HS.model <- ' visual = x1 + x2 + x3textual = x4 + x5 + x6speed = x7 + x8 + x9'

fit the model fit <- cfa(HS.model, data)

Illustration using NSSE

Sample: two cohorts of first-time freshmen who took NSSE, 2014 and 2016 at Cal State Fullerton.

Latent Variable: Learning Strategies

Three indicator items (1 = never, 4 = very often)

- *LSreading*: Identified key information from reading assignments
- LSnotes: Reviewed your notes after class
- LSsummary: Summarized what you learned in class or from course materials

Grouping Variable: URM (URM vs. non-URM)

Illustration of MI

lavaan

model <- 'LS =~ LSreading + LSnotes + LSsummary'</pre>

Latent Variables:				
	Estimate	Std.Err	z-value	P(> z)
L =~				
LSreading	1.000			
LSnotes	1.650	0.091	18.166	0.000
LSsummary	1.841	0.106	17.326	0.000
Intercents.				
incercepts.	Estimato	std Err		
ISreading	2 004	0.020	150 227	0 000
L Spotes	2 877	0.020	122 025	0.000
. LSHOLES	2.077	0.024	112 057	0.000
. Essuminar y	2.095	0.024	115.057	0.000
L	0.000			
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.LSreading	0.409	0.017	23.937	0.000
.LSnotes	0.340	0.025	13.612	0.000
.LSsummary	0.239	0.028	8.454	0.000
L	0.172	0.017	10.004	0.000

lavaan

model <- 'LS =~ NA*LSreading + LSnotes + Lssummary

LS ~~ 1*LS'

Latent Variables:				
	Estimate	Std.Err	z-value	P(> z)
L =~				
LSreading	0.415	0.021	20.008	0.000
LSnotes	0.684	0.025	26.981	0.000
LSsummary	0.764	0.026	29.362	0.000
Intercepts:				
	Estimate	Std.Err	z-value	P(> z)
.LSreading	3.004	0.020	150.237	0.000
.LSnotes	2.877	0.024	122.025	0.000
.LSsummary	2.693	0.024	113.057	0.000
L	0.000			
Variances:				
	Estimate	Std.Err	z-value	P(> z)
L	1.000			
.LSreading	0.409	0.017	23.937	0.000
.LSnotes	0.340	0.025	13.612	0.000
.LSsummary	0.239	0.028	8.454	0.000

Configural invariance

cfa(model, data, group = 'URM', missing = 'ML')

Non-URM (n=761)

URM (n=697)

Latent Variables:	Fetimate	std san	7		Latent Variables:				
	ESCIMALE	Sta.Err	z-varue	P(> 2)		Estimate	Std.Err	z-value	P(> z)
L =~	1 000				L =~	1 000			
LSreading	1 590	0 1 2 0	12 165	0.000	LSreading	1.000			
LSHOLES	1.000	0.120	13.105	0.000	LSnotes	1.730	0.139	12.489	0.000
LSsummary	1.808	0.146	12.428	0.000	LSsummary	1.878	0.156	12.055	0.000
Intercepts:					Intercents:				
	Estimate	Std.Err	z-value	P(> z)	Inter cepes.	Estimate	std Err	z_value	P(SIZI)
ISreading	2,977	0.028	107.683	0,000	L Croading	ESCHILACE 2 022	0.020	2-value	
ISpotes	2 866	0.032	88 560	0.000	.LSreading	3.033	0.029	104.911	0.000
. LSHOLES	2.000	0.032	01 015	0.000	.LSnotes	2.890	0.034	83.978	0.000
.LSSummary	2.078	0.035	81.813	0.000	.LSsummary	2.709	0.035	78.056	0.000
L	0.000				L	0.000			
Variances:					Variances:				
	Estimate	Std.Err	z-value	P(> z)	val rances.	Estimate	Std.Err	z-value	P(> z)
.LSreading	0.404	0.024	17.086	0.000	ISreading	0.414	0.025	16.746	0,000
.LSnotes	0.353	0.034	10.447	0.000	ISnotes	0 324	0.037	8 752	0,000
.LSsummarv	0.233	0.039	5,927	0.000	L Ssummary	0.246	0.041	6.048	0,000
	0.176	0.024	7,288	0,000	. Losumnar y	0.167	0.041	6 949	0.000
L	0.176	0.024	7.288	0.000	L	0.167	0.024	6.848	0.000

Metric invariance

cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings'))

Non-URM (n=761)

URM (n=697)

Latent Variables:					Latent Variables:				
	Estimate	Std.Err	z-value	P(> z)		Estimate	Std.Err	z-value	P(> z)
L =~					L =~				
LSredng	1.000				LSredng	1.000			
LSnotes (.p2.)	1.652	0.091	18.147	0.000	LSnotes (.p2.)	1.652	0.091	18.147	0.000
LSsmmry (.p3.)	1.842	0.106	17.324	0.000	LSsmmry (.p3.)	1.842	0.106	17.324	0.000
Intercepts:					Intercepts:				
	Estimate	Std.Err	z-value	P(> z)		Estimate	Std.Err	z-value	P(> z)
.LSreading	2.977	0.027	108.359	0.000	.LSreading	3.033	0.029	104.200	0.000
.LSnotes	2.866	0.033	88.125	0.000	.LSnotes	2.890	0.034	84.404	0.000
.LSsummary	2.678	0.033	81.882	0.000	.LSsummary	2.709	0.035	77.992	0.000
L	0.000				L	0.000			
Variances:					Variances:				
	Estimate	Std.Err	z-value	P(> z)		Estimate	Std.Err	z-value	P(> z)
.LSreading	0.406	0.023	17.508	0.000	.LSreading	0.413	0.024	16.860	0.000
.LSnotes	0.345	0.030	11.365	0.000	.LSnotes	0.334	0.031	10.650	0.000
.LSsummary	0.241	0.033	7.287	0.000	.LSsummary	0.238	0.034	7.005	0.000
L	0.167	0.018	9.087	0.000	L	0.177	0.020	9.013	0.000

Compare configural vs metric

config_out <- cfa(model, data, group = 'URM', missing = 'ML')
metric_out <- cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings'))</pre>

lavTestLRT(config_out, metric_out)

Scalar invariance

cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts'))

Non-URM (n=761)

URM (n=697)

Latent Variables:					Latent Variables:				
	Estimate	Std.Err	z-value	P(> z)		Estimate	Std.Err	z-value	P(> z)
L =~					L =~				
LSredng	1.000				LSredng	1.000			
LSnotes (.p2.)	1.650	0.091	18.164	0.000	LSnotes (.p2.)	1.650	0.091	18.164	0.000
LSsmmry (.p3.)	1.839	0.106	17.345	0.000	LSsmmry (.p3.)	1.839	0.106	17.345	0.000
Intercepts:					Intercepts:				
	Estimate	Std.Err	z-value	P(> z)		Estimate	Std.Err	z-value	P(> z)
.LSredng (.p8.)	2.994	0.023	130.269	0.000	.LSredng (.p8.)	2.994	0.023	130.269	0.000
.LSnotes (.p9.)	2.862	0.030	94.968	0.000	.LSnotes (.p9.)	2.862	0.030	94.968	0.000
.LSsmmry (.10.)	2.675	0.032	84.486	0.000	.LSsmmry (.10.)	2.675	0.032	84.486	0.000
L	0.000				L	0.020	0.024	0.819	0.413
Variances:					Variances:				
	Estimate	Std.Err	z-value	P(> z)		Estimate	Std.Err	z-value	P(> z)
.LSreading	0.406	0.023	17.496	0.000	.LSreading	0.413	0.025	16.849	0.000
.LSnotes	0.345	0.030	11.378	0.000	.LSnotes	0.334	0.031	10.664	0.000
.LSsummary	0.241	0.033	7.305	0.000	.LSsummary	0.238	0.034	7.021	0.000
L	0.168	0.018	9.094	0.000	L	0.177	0.020	9.020	0.000

Compare metric vs scalar

scalar_out <- cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts'))</pre>

lavTestLRT(metric_out, scalar_out)

Chi Square	Dit	fference	e Test						
	Df	AIC	BIC	Chisq	Chisq	diff	Df	diff	Pr(>Chisq)
metric_out	2	9840.4	9925.0	0.7136	1	2079		2	0 5226
SCATAL_OUL	4	903/./	9911.7	2.0114	1.	29/0		2	0.3220
									
									•
									Not sig.

Strict invariance

cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts', 'residuals'))

Non-URM (n=761)

URM (n=697)

Latent Variables:					Latent Varia	ables:				
	Estimate	Std.Err	z-value	P(> z)			Estimate	Std.Err	z-value	P(> z)
L =~					L =~					
LSredng	1.000				LSredng		1.000			
LSnotes (.p2.)	1.650	0.091	18.169	0.000	LSnotes	(.p2.)	1.650	0.091	18.169	0.000
LSsmmry (.p3.)	1.840	0.106	17.344	0.000	LSsmmry	(.p3.)	1.840	0.106	17.344	0.000
Intercepts:					Intercepts:					
	Estimate	Std.Err	z-value	P(> z)			Estimate	Std.Err	z-value	P(> z)
.LSredng (.p8.)	2.994	0.023	130.237	0.000	.LSredng	(.p8.)	2.994	0.023	130.237	0.000
.LSnotes (.p9.)	2.862	0.030	95.043	0.000	.LSnotes	(.p9.)	2.862	0.030	95.043	0.000
.LSsmmry (.10.)	2.675	0.032	84.478	0.000	.LSsmmry	(.10.)	2.675	0.032	84.478	0.000
L	0.000				L		0.020	0.024	0.819	0.413
Variances:					variances:					
	Estimate	Std.Err	z-value	P(> z)			Estimate	Std.Err	z-value	P(> z)
.LSredng (.p4.)	0.409	0.017	23.936	0.000	.LSredng	(.p4.)	0.409	0.017	23.936	0.000
.LSnotes (.p5.)	0.340	0.025	13.626	0.000	.LSnotes	(.p5.)	0.340	0.025	13.626	0.000
.LSsmmry (.p6.)	0.240	0.028	8.490	0.000	.LSsmmry	(.p6.)	0.240	0.028	8.490	0.000
L	0.168	0.018	9.136	0.000	L		0.177	0.020	9.051	0.000

Compare scalar vs strict

strict_out <- cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts', 'residuals'))</pre>

lavTestLRT(scalar_out, strict_out)

Alternative: semTools

library(semTools)

model <- 'L =~ LSreading + LSnotes + LSsummary'</pre>

measurementInvariance(model, data, strict= TRUE, group = "URM", missing = 'ML')

Measurement invariance models: Model 1 : fit.configural Model 2 : fit.loadings Model 3 : fit.intercepts Model 4 : fit.residuals Model 5 : fit.means Chi Square Difference Test BIC Chisq Chisq diff Df diff Pr(>Chisq) Df AIC fit.configural 0 9843.7 9938.8 0.0000 fit.loadings 2 9840.4 9925.0 0.7136 0.71364 2 0.6999 fit.intercepts 4 9837.7 9911.7 2.0114 1.29780 2 0.5226 fit.residuals 7 9831.9 9890.0 2.1773 0.16585 0.9829 8 9830.6 9883.4 2.8493 0.67200 0.4124it.means

Issues

- What if the measurement is non-invariant? (Sass, 2011).
 - Use only invariant items.
 - Allows parameters of non-invariant items to vary across groups (partial measurement invariance model)
 - Use all the items if the extent of noninvariance is small.
 - avoid using the scale
- Are survey items considered continuous or ordinal?
 - lavaan can model ordinal data.

Issues

scalar_out <- cfa(model, data = data,</pre>

```
group.equal = c("loadings", "intercepts"),
group.partial = c('L =~ LSnotes', 'LSnotes ~ 1'),
group = "URM", missing = 'ML')
```

Group 1 [0]:					Group 2 [1]:				
Latent Variables: E:	stimate	Std.Err	z-value	P(> z)	Latent Variables:	Estimate	Std.Err	z-value	P(> z)
L =~ LSredng LSnotes LSsmmry (.p3.)	1.000 1.594 1.839	0.112 0.106	14.216 17.329	0.000 0.000	L =~ LSredng LSnotes LSsmmry (.p3.)	1.000 1.710 1.839	0.123 0.106	13.894 17.329	0.000 0.000
Intercepts:			-		Intercepts:				
E	stimate	Std.Err	z-value	P(> z)		Estimate	Std.Err	z-value	P(> z)
.LSredng (.p8.)	2.993	0.023	127.948	0.000	.LSredng (.p8.)	2.993	0.023	127.948	0.000
.LSnotes	2.866	0.032	88.561	0.000	.LSnotes	2.851	0.040	70.580	0.000
.LSsmmry (.10.)	2.673	0.032	82.378	0.000	.LSsmmry (.10.)	2.673	0.032	82.378	0.000
L	0.000				L	0.023	0.025	0.888	0.375
Variances:					Variances:				
E	stimate	Std.Err	z-value	P(> z)		Estimate	Std.Err	z-value	P(> z)
.LSreading	0.406	0.023	17.431	0.000	.LSreading	0.413	0.024	16.902	0.000
.LSnotes	0.355	0.033	10.745	0.000	.LSnotes	0.321	0.036	8.960	0.000
ISsummary	0.229	0.037	6.200	0.000	.LSsummary	0.251	0.038	6.668	0.000
L	0.172	0.020	8.779	0.000	L	0.172	0.020	8.469	0.000

Issues

library(semTools)

```
model <- 'L =~ LSreading + LSnotes + LSsummary'</pre>
```

measurementInvarianceCat(model, data = data, strict = T, group = "URM",

ordered = c("LSreading","LSnotes","LSsummary"))

Measurement invariance models:											
Model 1 : fit.configural Model 2 : fit.loadings Model 3 : fit.thresholds Model 4 : fit.residuals Model 5 : fit.means											
<pre>Scaled Chi Square Difference Test (method = "satorra.bentler.2001")</pre>											
	DF AIC BIC	Chisq Chi	sq diff Df	diff Pr(>Chisq)						
fit.configural	0	0.0000									
fit.loadings	2	2.3680	4.1477	2	0.1257						
fit.thresholds	7	5.3724	6.5088	5	0.2598						
fit.residuals	10	5.5467	0.3762	3	0.9451						
fit.means	11	7.8282	0.5332	1	0.4653						

Optional: Plotting the model

library(semPlot)

semPaths(config_out, "est") # if you want add estimates to the figure.

Summary

- Measurement invariance is <u>required</u> for accurate assessment and evaluation.
- Multiple Group CFA is the most widely used tool for testing measurement invariance.
- Testing for measurement invariance in R is relatively simple.

A lot of examples online.

End

Question?

