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Graduates from the College of Natural Sciences and Mathematics:

Understand the basic concepts and principles of science and mathematics.

Are experienced in working collectively and collaborating to solve problems.

Communicate both orally and in writing with clarity, precision and confidence.

Are adept at using computers to do word processing, prepare spreadsheets and graphs, 
and use presentation software.

Possess skills in information retrieval using library resources and the Internet.

Have extensive laboratory, workshop, and field experience where they utilize the scientific 
method to ask questions, formulate hypotheses, design and conduct experiments, and 
analyze data.

Appreciate diverse cultures as a result of working side by side with many people in 
collaborative efforts in the classroom, laboratory and on research projects.

Have had the opportunity to work individually with faculty members in conducting research 
and independent projects, often leading to the generation of original data and contributing to 
the research knowledge base.

Are capable of working with modern equipment, instrumentation, and techniques.
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Amy Feaster, Eric Flynn
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Departments of Mathematics and Physics

Abstract

The biquaternionic projective point, BP0, has been shown to contain twistor structure [1]. However
the details of the topology and its properties have not been fully explored. In this paper we address this
issue by determining an explicit basis for the topology on BP0 and analyzing some its elements.

1 Introduction

Twistor theory is a subject of great interest in mathematical physics. BP0 has been shown to contain a
twistor structure due to to its topological properties [1]. Although this characteristic has been shown, the
complete topology and its properties were unknown. Our goal is to determine a basis for the topology of BP0

as well as explore stereographic projections and separation properties of this basis. In section II we outline
the relevant background needed for the results in section III. We construct BP0 and then find a basis for the
topology in section III. We note that C2⇥2 and B are isomorphic as algebras, which is the only structure
needed this paper. Thus, we represent biquaternions as 2⇥ 2 complex matrices throughout.

2 Background

2.1 Definitions

For standard results on topological spaces, see [3].

Definition 1. A set X for which a topology ⌧ has been specified is called a topological space. The
elements of ⌧ are called open subsets of X.

Definition 2. A map f : X −! Y is said to be continuous if for each open set V ✓ Y the set f−1(V ) is
open in X.

Definition 3. A map f : X −! Y is said to be an open map if for each open set U of X, the set f(U) is
open in Y .

Definition 4. Let X and Y be topological spaces; let p : X −! Y be a surjective (i.e. onto) map. The map
p is said to be a quotient map, provided a subset of V of Y is open in Y if and only if P−1(V ) is open in
X.

Definition 5. If X is a space, A is a set, and p : X −! A is a surjective map, then there exists exactly one
topology ⌧ on A relative to which p is a quotient map; it is called the quotient topology induced by p.
The set A with the quotient topology is called a quotient space.

2.2 Theorems

With the previous definitions, we can prove the following general theorems

Theorem 2.1. Let f : (X, ⌧X) ! (Y, ⌧Y ) be invertible and continuous. Then f is open if and only if f

−1
is

continuous.

1



7

Correlation of Egg Lipid Content with Early Spider Development in the
Western Black Widow Spider, Latrodectus hesperus, and the Brown 
Widow Spider, Latrodectus geometricus

Spider eggs are produced in the ovaries of female 
spiders. The eggs progress through several stages of 
maturation or vitellogenesis during which time they 
increase in size as they accumulate yolk, a combination 
of vitellogenin proteins and lipids [Trabalon, Pourie 

Department of Biological Science, California State University, Fullerton

Jake R. Bergara and Gloria J. Camacho
Advisor: Dr. Merri L. Casem

Abstract

Introduction

Latrodectus hesperus is the native cobweb weaving 
black widow spider in the western United States. 
In recent years, the non-native cobweb weaver, 
Latrodectus geometricus or brown widow spider, has 
increased in population density; appearing to replace 
the native black widow populations. The apparent 
success of the brown widow may be due to several 
factors. In this paper, the potential role of reproduction 
was explored, specifically the lipid content of eggs. 
Comparison of the two Latrodectus species reveal that 
while Latrodectus geometricus produces clutches with 
fewer and smaller eggs, the per egg lipid content is 
significantly greater than that of Latrodectus hesperus. 
Furthermore, there is a significantly different rate of 
metabolic activity of the developing spider embryos, 
as inferred from the change in egg case weight over 
time, between the two widow species. Surprisingly, the 
lipid-poor species, Latrodectus hesperus demonstrated 
the faster rate. Despite the difference in metabolic rate, 
the ultimate emergence of the first instar spiderlings 
from the egg case occurred after approximately the 
same amount of time. The differences in lipid content 
in L. hesperus may reflect variation in the metabolic 
pathways used to generate energy or an unequal 
distribution of yolk across the clutch of eggs.

& Hartmann 1998]. Yolk supports the development 
of the spiderling, eventually becoming enclosed in 
the abdomen of the embryo [Foelix 2011] where it 
will continue to support the growth of the spiderling 
through its larval and early instar stages until the 
spider begins to feed independently [Foelix 2011].

Spiders are capable of producing multiple clutches 
of eggs from a single mating. During copulation, a male 
spider will deposit his sperm on an external object 
(usually web) where it is transferred into his pedipalps. 
Following this, the male spider will use his pedipalps 
to deposit the sperm packet into the female’s genital 
opening located just inferior to the book lung slits

[Foelix 2011]. The sperm is stored in the seminal 
receptacle near the oviduct. The mature eggs are 
fertilized as they move out of the female during the 
process of oviposition. The fertilized eggs are deposited 
into a silken egg case that will serve to protect the 
developing embryos. While still within the egg case, the 
larval spiders (spiderlings) hatch from their eggs, shed 
their embryonic cuticle, and complete one molt of their 
exoskeleton (first instar). Only then will the spiderlings 
emerge from the egg case.

Spiders in the genus Latrodectus are cob 
weaving, “widow” spiders that are commonly found 
in urban environments. In southern California, the 
native Latrodectus species is the black widow spider, 
Latrodectus hesperus. Populations of the non-native 
brown widow spider, Latrodectus geometricus, have 
become increasingly prevalent, seeming to replace the 
native black widow spider. Differences in the reproductive 
properties of these two spiders could provide a possible 
explanation for the apparent change in the population 
density of black versus brown widow spiders.
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Spider Collection and Maintenance

Egg Number and Volume

Egg Case Weight Variation

Quantitation of Lipid Content

Egg Case Production

Methods

Results

Black and brown widow spiders were collected from 
neighborhoods in Orange and Riverside counties 
during the summer months of 2014 and 2015. Spiders 
were housed individually in plastic containers and 
maintained in a growth chamber with a 14:10 day: night 
cycle at a temperature of 27°C. Spiders were fed a diet 
of mealworms (juvenile Tenebrio molitor) every 14 days. 
Spiders that had mated prior to capture were able to 
produce multiple egg cases, each containing a mass of 
developing embryos, under laboratory conditions. Egg 
cases were removed from the female spider’s web and 
processed for analysis as described below.

Developing embryos (eggs) were removed from the egg 
case by gently tearing open the silken wall of the case 
using fine forceps. The eggs were allowed to fall into a 
small petri dish where they were photographed. The 
total number of eggs within an egg case was determined 
from the photograph. The diameter of the eggs was 
measured using Photoshop and the volume was 
calculated using the average radius assuming the egg to 
be a sphere.

Latrodectus hesperus and Latrodectus geometricus 
egg cases were individually separated into labeled 
petri dishes and maintained in the laboratory at 
room temperature. Individual petri dishes held one 
egg case and were labeled with the day in which the 
mother spider was collected and the lay date of her 
eggs. Using an electronic balance, the weights of each 
egg case were recorded daily until spiderlings emerged 
from the egg sac. Egg sacs were collected and weighed 
until the date of spiderling emergence, a process which 
took around one month depending on the widow 
species. Weight trends for opposing species were 
then analyzed upon collection of data. Spiderlings 
along with the eggs were left alone and frozen for 
subsequent analysis of lipid content.

For some experiments, developing spider embryos 
(eggs) were removed from their egg case and, 
photographed as described above. The eggs were 

Spiders in the genus Latrodectus were capable of 
reproducing under laboratory conditions. Individual 
spiders that had mated prior to their capture could 
produce multiple egg cases over a period of months in 
the laboratory. Each individual egg case contained a 
clutch of multiple eggs. An egg represents a developing 
spider embryo “housed” within an egg shell. The average 
clutch size of the black widow, Latrodectus hesperus, 

transferred to a glass vial and frozen at -20°C. In 
other experiments the spiderlings were allowed to 
complete their development, hatch from the egg and 
emerged from the egg case. The spiderlings were 
frozen then placed in a petri dish to be photographed 
before being transferred to a glass vial. Lipid content 
was determined following the protocol of Salomon, 
Mayntz, and Lubin (2008). Egg or spiderling samples 
were desiccated by incubation in an oven at 85°C for 
a total of 48 hours. Samples were then removed from 
the oven and weighed to obtain a post desiccation 
weight. Once this weight was taken, the samples 
were subject to ethyl ether washes to extract lipid. 
Using the same vials they were previously placed in, 
they were soaked in ethyl ether (enough so that all 
the specimens were submerged) a total of four times, 
fifteen minutes each (one hour total). Following ethyl 
ether washes, they were weighed once again. This 
weight was then subtracted from the post desiccation 
weight to obtain the “post-lipid extraction” weight. 
Lastly, the difference was then divided by the total 
number of spiderlings or eggs within the original egg 
case to obtain weight per individual. When specimens 
were desiccated and not in the oven, they were being 
stored at room temperature.

Individual spiders produced numerous egg cases 
and the lipid content was measured for each successive 
egg case to observe if there was any change. The 
main goal for this was to see if these spiders lose the 
ability to provide successive offspring with the same 
amount of nutrients required to sustain life. Again, the 
environment as well as the clutch size plays important 
roles in data variation.
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was significantly larger than that of the brown widow, 
Latrodectus geometricus (p=0.00001) [Table 1]. 
Moreover, the overall size of the eggs, and hence their 
volume, was greater for L. hesperus compared to L. 
geometricus [Table 1]. Despite the relatively smaller 
size of the eggs of L. geometricus, it was found that the 
overall lipid content of the eggs tended to be greater 
than that of L. hesperus [Table 1].

Spider development, including hatching from the egg 
and the first true molt, occurs within the egg case. 
The interval between egg case production and the exit 
of the first instar spiderlings from the egg case was 
defined as the time to emergence (TE). It was found 
that the time between egg case production by the 
female spider and the emergence of the spiderlings from 
the egg case averaged 29 days for L. hesperus and 36 
days for L. geometricus [Table 1]. This difference was 
not statistically significant (p=0.45)

The weight of individual egg cases differed between 
individuals from within the same Latrodectus species 
and between the two species [Fig. 1]. It was found 
that the weight of both individual L. hesperus and L. 
geometricus egg cases decreased linearly over time. 
Both species demonstrated a consistent decrease 
in egg case mass with an R2 correlation coefficient 
values ranging from 0.89 to 0.99. The average rate of 
change in egg case weight over time was greater for L. 
geometricus compared to L. hesperus [Table 1].

Widow spiders are capable of producing multiple 
egg cases while in the laboratory. Analysis of the 
lipid content of subsequent egg cases from both L. 
geometricus and L. hesperus showed no discernable 
pattern. The per egg lipid content varied widely both 
between spiders and even in the same female. There 
is no significant difference between the data of an 
individual spider’s successive egg sacs or the spiders 
themselves. Lipid content per egg per egg sac for both 
species of spiders is shown in Figures 2A and B.

Time to Emergence

Change in egg case weight

Lipid Content Per Egg in Successive Egg Cases

Days Post Egg Case Production

A.

B.

Days Post Egg Case Production

Figure 1. Both L. Hesperus (A) and L. geometricus (B) egg cases were 
weighed on a day-to-day basis.  Both species showed a consistent linear 
decrease in weight over time with L. geometricus displaying a smaller 
slope.  Slope signifies the rate of metabolism.

Average number of eggs per 
clutch

150±50 (n=22)* 89±22 (n=12)*

29 ± 7.6** 36 ± 4.8**

4.3 ± 2.1 μg (n=11) 11.2 ± 3.0 μg (n=6)

9.4x10-4 ± 2.4x10-4§ 3.0x10-4 ± 9x10-5§

0.074 cm3 0.038 cm3

Latrodectus hesperus Latrodectus geometricus

Average egg volume

Average lipid content per egg

*p=0.0001    **p=0.45    §p=0.0002

Table 1

Average rate of weight loss
(g per day)

Time of Emergence (Te)(days)
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Oocyte maturation occurs through the accumulation 
of yolk during the process of vitellogenesis [Trabalon, 
Pourie & Hartmann 1998; Pourie & Trabalon, 2003]. 
Vitellogenin proteins are produced by the spider’s fat 
bodies and are taken up from the hemolymph into 
the oocytes through a process of receptor-mediated 
endocytosis [Foelix, 2011]. These proteins help bring 
lipids into the oocyte which accumulates into yolk 
granules in the mature egg. Each successive clutch 
of eggs requires a set amount of vitellogenin proteins 
and lipids per egg in order support the development 
of the spider embryos. While the spiders in this study 
were capable of producing multiple clutches of eggs, 
the amount of lipid per egg within a clutch was highly 
variable. All spiders were fed on a biweekly basis 
suggesting that the availability of nutrition was not 
responsible for this variation.

Discussion

Despite the variation between clutches, the 
average lipid content per egg differed between L. 
hesperus and L. geometricus; with L. geometricus 
having a significantly greater lipid content. This result 
was unexpected since the size, and presumably the 
volume, of the L. hesperus egg is greater than that of 
the L. geometricus egg. Another result from this study 
was the observation that the number of eggs produced 
in the average L. hesperus clutch was significantly 
greater than the number of eggs in an average L. 
geometricus clutch. One possible explanation for 
these observations could be that the female spider 
has a finite nutritional supply that she can allocate to 
vitellogenesis and yolk production. Dividing a limited 
resource between a larger number of oocytes would 
result in a smaller “serving” per egg.

The lower lipid content in the eggs of L. hesperus 
implies that the increased quantities of eggs comes at 
a cost in quality in terms of transferring nutrients to 
the offspring. A higher quality egg is going to contain 
the necessary levels of lipid available to the developing 
spider. However, the timing of development of the 
two species, based on the emergence of the spiderlings 
from the egg case, was not significantly different. This 
observation may support the idea that the difference in 
the lipid content per egg is a consequence of unequal 
distribution of the lipid resources between eggs in 
a clutch. Only those eggs with sufficient nutritional 
resources will develop into a spiderling that is capable 
of leaving the egg case. It is possible that a population 
of inviable eggs contributed to over-estimating egg 
number. It has been observed that there is a size 
differential between the first instar spiderlings of 
L. hesperus compared to L. geometricus (personal 
communication) which may also support the idea of 
unequal distribution of nutrients.

Another interesting difference between the two 
Latrodectus species is the change in the weight of the 
egg cases over time during development. Since the 
silken egg case encloses the clutch of eggs, the loss in 
mass can only be accounted for by the potential loss of 
water and CO2 as a consequence of cellular metabolism 
within the eggs. The developing embryos are 
undergoing multiple mitotic cell divisions and cellular 
rearrangements. All of this cellular activity requires 
a constant supply of energy. Metabolic processes 

A.

B.

Figure 2. Lipid content per egg for successive egg sacs for individual 
spiders.  Some spiders produced more egg sacs than others hence the 
absence of bars.  There is no apparent trend visible for L. hesperus (A) 
or L. geometricus (B).
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L. hesperus first instars have been observed feeding 
on viable unhatched embryos and other first instar 
siblings. Sibling cannibalism has been reported in other 
spiders [Ibarra, 1985; Wagner 1995]. It is possible that 
the tendency of L. hesperus and not L. geometricus to 
engage in sibling cannibalism is a consequence of the 
disparity in lipid content between the two species.

In conclusion, this study has shown that differences 
exist between the lipid content of the eggs from the two 
species of Latrodectus commonly found in southern 
California. The success of the non-native L. geometricus 
may be due, in part, to the high lipid content that the 
female spider provides to her oocytes. In future, it would 
be interesting to determine the survival rate of the L. 
geometricus spiderlings. Does the increased nutrition 
and smaller clutch size of the L. geometricus egg case 
result in more spiderlings reaching adulthood more 
quickly? Conversely, is the lower lipid content and larger 
clutch size of the L. hesperus egg case a competitive 
disadvantage? This dynamic might help accounting for 
the apparent reduction in the number of the native black 
widows in our local environment.
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Effects of Fire-related Changes in Coastal Sage Scrub and Grassland
Vegetation on the Activity of Desert Cottontails

Kaitlyn Berry
Advisor: Dr. Paul Stapp

Abstract

Introduction

In the coastal sage scrub (CSS) ecosystem, wildfires 
destroy habitat for wildlife in the short-term, but can 
create new resources, such as shelter and food, as 
the plant community recovers. In turn, herbivorous 
mammals may influence post-fire vegetation recovery, 
especially along the fire’s edge, because individuals 
that take refuge in unburned vegetation may forage 
in the open and take advantage of new plant growth. 
I used pellet counts to study the activity of desert 
cottontails (Sylvilagus audubonii) in CSS and non-
native grassland habitats at the Robert J. Bernard 
Field Station in Claremont, California, one year after a 
fire at the field station. I hypothesized that cottontail 
activity would be greater in CSS than in grasslands, 
and greater at the edge between unburned and burned 
vegetation than in burned areas far from the edge. 
At approximately three-month intervals, I counted 
rabbit pellets in 0.78-m2 plots placed every 20-m 
along three 160-m transects located perpendicular to 
the burn edge in both habitat types. Pellet densities 
varied greatly among plots and transects in any 
given sampling period, but mean pellet density was 
significantly higher along CSS transects than in 
grasslands. In CSS, pellet densities were consistently 
highest in the edge and burned plots, whereas, in the 
grasslands, there was no consistent spatial pattern 
in pellet densities. Overall rabbit activity, expressed 
as mean pellet accumulation rate (pellets/m2/week), 
increased from February to August 2015 and was 
consistently lowest in unburned CSS as compared to 
the edge and burned areas. In August and November 
2015, rabbit activity declined in edge plots relative to 
burned plots, perhaps because intense foraging near 
the edge eliminated palatable plants, forcing rabbits to 

Wildfires are an important source of disturbance and 
mortality for both plants and animals. Although the 
most obvious and immediate effect of a fire is the 
destruction of aboveground vegetation, fires can also 
decrease local plant diversity, affect soil moisture and 
nutrients, and reset ecological succession (Otten and 
Holmstead 1996; Francl and Small 2013). In some 
ecosystems, such as coastal sage scrub (CSS), however, 
wildfires are a form of disturbance that is essential 
to remove dead material, restore soil nutrients, and 
maintain the native plant community (Francl and Small 
2013). CSS plants such as sugar bush (Rhus ovata) 
leafy California buckwheat (Eriogonum fasciculatum), 
laurel sumac (Malosma laurina), and western poison 
oak (Toxicodendron diversiobum) require the heat of 
a fire to germinate their seeds (National Park Service 
2016; Ainsworth and Doss 1995). Some grasses and 
perennial herbaceous plants produce more seeds after 
a wildfire than in previous years without fire (Bock 
and Bock 1996). However, even with increased seed 
production, CSS vegetation may not fully recover for 
two to four years (Valone et al. 2002).

A fire can kill individual animals directly or may 
indirectly alter habitat and food resources for wildlife 
through its effects on vegetation structure and plant 
communities. In turn, wildlife species can influence post-

forage farther away from refuge. Information on small-
scale habitat characteristics at individual sampling 
plots may be necessary to explain the high variability 
in rabbit activity among plots and transects.

Department of Biological Science, California State University, Fullerton
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fire vegetation recovery by consuming plants and seeds, 
or creating soil disturbances that affect seed germination 
(Otten and Holmstead 1996). The loss of shrubs, for 
example, may eliminate escape cover and habitat for 
small mammals (Kundaeli and Reynolds 1972). Small 
mammal diversity often declines immediately following 
a fire and can take three years to return to pre-fire 
diversity levels (Francl and Small 2013).

One CSS mammal that may be particularly 
affected by fires is the desert cottontail, Sylvilagus 
audubonii (Fig. 1). The desert cottontail is common 
throughout low-elevation, shrub-dominated areas of 
the western United States (James and Peeters 2004). 
These rabbits are crepuscular or nocturnal and live in 
burrows during the day (Orr 1940). Cottontails feed 
primarily on plants, including grasses, forbs, woody 
plants, and some fruits (Chapman and Willner 1978). 
Desert cottontails usually live close to their food 
sources, but can travel to find food. Male rabbits range 
over 6.1 ha in one day, whereas females tend to have 
much smaller daily ranges (0.41 ha; Ingles 1941).

Rabbits also use vegetative cover for protection 
from predators, which may include coyotes (Canis 
latrans), raccoons (Procyon lotor), striped skunks 
(Mephitis mephitis), red-tailed hawks (Buteo 
jamaicensis), great horned owls (Bubo virginianus), 
rattlesnakes (Crotalus sp.), and domestic cats and 
dogs (Felis catus, Canis familiaris; Chapman and 
Willner 1978). Upon encountering a predator, a rabbit 
may freeze, dodge, or run away (Ingles 1941). 

Shrubs provide the best protection and shelter for 
cottontails, although fallen trees and other woody debris 
can provide similar cover (Kundaeli and Reynolds 1972). 
Fires that destroy vegetation and food plants therefore 
affect cottontail behavior and populations. For example, 
Otten and Holmstead (1996) found higher levels of 
rabbit activity in unburned control plots than in seeded 
areas that had been burned.

Because cottontails live in dense vegetation, 
are most active at night, and are hard to capture, 
it is difficult to estimate population density directly 
(Chapman and Willner 1978; Southern 1940). Indirect 
measures of relative abundance can be obtained by 
spotlighting or flush counts. Counts of fecal pellets in 
fixed plots or transects are also used to estimate activity 
and population size indirectly (Kundaeli and Reynolds 
1972). However, there are some disadvantages of this 
method. First, some pellets might be overlooked if the 
substrate or ground cover is dense. Second, the rate of 
deterioration of pellets is sensitive to weather; pellets 
deteriorate faster in humid environments than in dry 
ones (Julander et al. 1962). Pellet decomposition rate 
is also affected by the rabbit’s diet, making it difficult 
to determine the exact age of the pellets. To use pellet 
counts to estimate population density, the number of 
pellets expelled by a rabbit per day must be known. For 
example, Ingles (1941) found in the laboratory that one 
desert cottontail left 488 pellets in a 15-hour period, 
whereas another rabbit deposited 540 pellets over the 
same time period. Rabbits dropped pellets while they 
moved and ate, but not in the areas near their burrows 
(Ingles 1941). Sampling plots therefore must be widely 
distributed around a study site to sample all possible 
areas used. Pellet counts may be best considered as 
a way to obtain some measure of the level of rabbit 
activity in an area (Julander et al. 1962).

I used pellet counts to investigate the effects of 
fire on desert cottontail activity in CSS and non-native, 
annual grassland habitats at one study site in southern 
California. I hypothesized that rabbit activity would be 
greater in CSS than in non-native grassland, and greater 
at the edge between unburned and burned vegetation 
than in burned areas far from the edge. I predicted that 
rabbit activity would be greater along the edge rather 
than the unburned or burned areas because the edge 
would provide both available cover and an abundance of 

Figure 1. Desert cottontail (Sylvilagus audubonii).  
Photo credit: San Francisco Bay Wildlife 2009.
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new plant growth in the adjacent burned area. Lastly, 
I predicted that cottontail activity would be greater in 
unburned than burned CSS because of the absence of 
vegetation cover in the burned area.

My research project was conducted between November 
2014 and November 2015 at the Robert J. Bernard 
Field Station (BFS) in Claremont, California. 
Vegetation at the 35-ha site is mostly coastal sage 
scrub and non-native grasslands, along with some 
coast live oaks (Quercus agrifolia) and western 
sycamores (Plantaus racemosa) near the paved roads 
and buildings (Hamlett 2015). In addition to desert 
cottontails, other small mammals at the BFS include 
the California ground squirrel (Otospermophilus 
beecheyi), Botta’s pocket gopher (Thomomys bottae), 
Pacific kangaroo rat (Dipodomys agilis), deer mouse 
(Peromyscus maniculatus), and big-eared and San 
Diego desert wood rats (Neotoma macrotis; Neotoma 
lepida intermedia; Hamlett 2015). Although black-
tailed jackrabbits (Lepus californicus) were historically 
present, the desert cottontail is the only rabbit species 
currently at the site. In September 2013, employees of 
the local water company accidentally started a brush 
fire in the southeastern portion of the BFS (Hamlett 
2015). This 8-ha fire primarily burned CSS and 
grassland vegetation. Both areas had shown significant 
recovery by the start of my surveys, although the effects 
of the fire were still obvious some 26 months later.

Pellet sampling plots (0.78 m2) were established at 
nine stations along three 160-m long transects placed 
perpendicular to the burn edge in both CSS and 
grassland vegetation types (Fig. 2). Transects were at 
least 40 m apart, with plots spaced at 20-m intervals. 
Plots were placed 1 m from the path used to walk 
between plots to minimize disturbance. Each plot was 
marked with a permanent stake-wire flag at its center. 
At the time of sampling, all pellets were counted within 
a 56.4-cm radius of the flag. Once counted, all pellets 
were discarded outside of the plot.

Initial pellet densities were recorded on November 
11, 2014, and all pellets were removed. Plots were 
re-sampled approximately three months later on 
February 27, May 8, August 18, and November 13, 2015. 
I chose this frequency of sampling to allow multiple 
weeks for new rabbit pellets to accumulate in the plots.

Pellet densities were first estimated for each plot 
and transect to compare variation in pellet densities 
between plots and transects and across the unburned-
burned gradient in a given habitat type. Prior to 
calculating densities, pellet counts were natural-log 
transformed to reduce the effects of high variability in 
counts among plots. Pellet densities were averaged at 
each distance category to estimate how mean pellet 
density varied relative to the burn edge in CSS and 
grassland habitats. Pellet densities were compared 
by examining the overlap in 90% confidence intervals 
(CI) for each distance category. A paired t-test was 
performed to compare the mean pellet densities at each 
distance. Mean pellet accumulation rates (pellets/m2/
week) were calculated for each sampling period for both 
habitat types. Plots were grouped into three distance 
zones (unburned, -80 to -40 m; edge, -20 to 20 m; and 
burned, 40 to 80 m), with a total of nine plots per zone. 
Note that it was not possible to calculate accumulation 
rates for the initial November 2014 survey because it 
was impossible to know how long the original pellets 
had been in the plots. For a given sampling period and 
habitat type, I used a Kruskal-Wallis test to determine if 
accumulation rates differed between zones.

Study Area

Methods and Materials

Figure 2. Layout of the study area at the Bernard Field Station, 
Claremont, California, showing the locations of three transects in CSS 
(left) and three in the grasslands (right), each with nine sampling plots 
(yellow circles). The edge of the fire is visible in the middle of each 
transect, especially the in CSS. Source: Google Earth. Image accessed 
February 17, 2015.
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Results

Pellet densities were significantly higher along CSS 
unburned and burned transects than along grassland 
transects during each sampling period (paired t-tests, 
P<0.01, d.f. = 8; Fig. 3). Densities were particularly 
high 20 m into the unburned CSS (-20 m) during 
November 2014, February 2015, and May 2015, but 
then decreased in the August and November 2015 plot 
checks. Densities were similarly high at 80 m into the 
burned CSS areas during each survey. 

Pellet densities were consistently low far into the 
unburned CSS (-80 m; Fig. 3). Counts in grassland 
transects were highly variable among plots and 
transects during each sampling period. Pellet 
densities greatly increased across all grassland plots 
in August and November 2015. Pellet densities varied 
greatly between plots and transects in both CSS and 
grasslands across all sampling periods.

Figure 3. Mean density of rabbit pellets at different distances from 
the edge of a fire in CSS and grassland areas of the Bernard Field 
Station, Claremont, California, surveyed on five occasions in 2014-
2015. Densities during the November 2014 survey (top left) represent 
pellets that had accumulated over an unknown length of time, 
whereas other surveys were 10-15 weeks apart. Negative distances 
indicate unburned plots. Counts were ln(count+1)-transformed. 
Values are mean + 90% CI, with n = 3 plots per distance in each 
vegetation type. The dashed line indicates a mean value of 100 pellets 
in a plot and is shown for reference.
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Rabbit activity, based on pellet accumulation 
rates, was consistently highest in CSS and within 
CSS, along the edge of the fire and in the burned area 
(Table 1). However, rabbit activity increased in the 
burned area and decreased in the edge in August and 
November 2015 (Table 1). Rabbit activity was very low 
in the grassland area and did not differ significantly 
between zones, although activity tended to increase in 
edge and burned grassland areas later in 2015 (Table 1).

Patterns of pellet density, and especially, pellet 
accumulation rates, across my five surveys suggest 
that activity of desert cottontails is greater in CSS 
than grasslands. This was not surprising given the 
affinity of cottontail rabbits for habitats with significant 
shrub cover (Ingles 1941). Cottontail activity is often 
associated with higher shrub densities because shrubs 
provide the best cover from predators (Kundaeli and 
Reynolds 1972). One year after the fire, rabbit activity 
in CSS tended to be highest near the edge of the burn 
early in the year, but increased in the burned vegetation 
in late summer and autumn. At the edge of burned CSS, 
rabbits have the benefit of proximity to shrub refuges as 
well as access to nutritious new growth in the recently 
burned vegetation (Ingles 1941). Thus the edge may 
provide both protection and nutritious food. 

Discussion

This might be particularly important in spring, when the 
first substantial new growth appeared after the fire. By 
late summer, it is possible that rabbits had consumed 
most of the new growth near the shrubby edge and 
were forced to forage farther away and deeper into the 
burned area (Chapman and Willner 1978). This might 
explain why rabbit activity increased during summer 
and autumn. By this time, however, other taller plants, 
especially yerba santa (Eriodictyon californicum) and 
royal penstemon (Penstemon spectabilis) had emerged 
in large numbers in the burned area, and therefore may 
have provided sufficient overhead cover for rabbits.

Pellet accumulation rates serve as a good measure 
of rabbit activity because they account for both plot 
area and the number of pellets deposited over time. 
Accumulation rates can be used to estimate population 
densities if the relationship between pellet density and 
population density can be independently established 
(Ingles 1941). This relationship also depends upon an 
understanding of the number of pellets deposited by an 
individual rabbit each day, which may vary with the 
quality of the rabbit’s diet and by the rate of pellet 
decomposition in the environment, which is influenced 
by weather and the type of substrate (Sanchez et 
al. 2009). Unfortunately, such data do not exist for 
desert cottontails in CSS environments, which makes 
it difficult to determine rabbit population density from 
pellet counts alone.

Table 1. Mean accumulation rate (pellets/m2 /week) of pellets of desert cottontails in CSS and grassland areas of the Bernard Field Station, 
Claremont, California. Pellet surveys were conducted on five occasions from November 2014 to November 2015, although accumulation rates could 
not be estimated for the 2014 survey because pellets were first removed from plots in November 2014. Plots were placed in zones based on their 
distance from the fires edge, as follows: unburned (-80, -60, -40 m), edge (-20, 0, 20 m), and burned (40, 60, 80 m). Values are means ± 90% CI, 
with n = 9 plots per zone. Kruskal-Wallis tests were used to compare accumulation rates among zones for each sampling period. Asterisks (*) 
denote surveys when accumulation rates differed significantly among zones (α = 0.10; X2 = 4.61, d.f. = 2).
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Pellet densities varied considerably between plots and 
transects, and between sampling periods for the same 
plots. To more reliably track changes in rabbit activity 
as the vegetation recovers, it may be necessary to 
increase the number of transects and sampling periods, 
although this may not be practical for the 2013 fire at 
the BFS, given this fire’s relatively small size (8 ha). 
The high variability among plots and transects might 
also reflect small-scale variation in the availability of 
cover or food plants at a given sampling plot.  Detailed 
habitat measurements taken at each plot might help 
explain variation in pellet densities among plots within 
a habitat type. Spotlight or mark-recapture surveys 
could be conducted to provide an independent estimate 
of cottontail abundance at the BFS, which could then 
be used to determine the relationship between rabbit 
abundance and pellet accumulation rate.

AcknowledgementsFuture Studies 
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Companion Plant Density Effects Of Basil (Ocimum Basilicum) On Toma-
to Plant (Solanum Lycopersicum): Growth Rate, 
Herbivory, And Productivity

Food security is defined as when people at all times 
have adequate access to sufficient, safe, nutritious 
food to maintain a healthy and active lifestyle (Food 
Security, n.d.). Global food insecurity is a significant 
societal issue that affects both western and third world 
countries, and this concern is only expected to increase 
as the population grows. Growing human populations 
and the need for food production exposes major 
societal concerns, with some consequences already 
being evident. A recent study conducted on dietary 
intake values among Minnesotan youth by Smith and 
Richards in 2008 exposes the societal concern and 
impact which food insecurity may have on people 
within the general populous. The study revealed that 
the majority of homeless Minnesotan youth possessed 
inadequate dietary intake levels for essential nutrients 
including vitamins A, C, D, E and calcium, potassium, 
phosphorous, foliate, and zinc (Smith and Richards, 
2008). Proper essential nutrient composition is needed 
for healthy physiological functions and cellular health. 
These recent findings produced by Smith and Richards 
on the nutrient poor diets of the Minnesotan homeless 
youth not only exemplify the issues of food insecurity 
within society, but also the need for locally accessible 
nutrient dense foods within the community.

Although locally produced nutrient dense food 
is an apparent need for the health and well being of 
individuals within societies worldwide, this demand 
is often substituted for a mass produced form of 
agriculture known as monoculture agriculture. While 
the agricultural method of growing crops within 
a monoculture enables for the mass production of 
crops, the monoculture design is associated with 
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Abstract Introduction

Food insecurity, the lack of consistent access to 
nutritious and affordable food, is a global societal 
concern. Small-scale urban gardens are an increasingly 
popular approach to addressing local food insecurity, 
but pest management requires new approaches. 
Companion planting, co-planting of crops to reduce 
pests and improve productivity through ecological 
interactions, may be effective but little research has 
been done on this approach. In this study the impact of 
companion planting of tomato (Solanum lycopersicum), 
with different densities of basil (Ocimum basilicum), 
on tomato growth rate, productivity, and herbivory 
was explored. It was hypothesized that basil would 
negatively affects tomato growth and productivity at 
high densities, but reduce herbivory at any density. 
Individual tomato plants with zero (0 basil plants/
replicate), low (3 basil plants/replicate), and high (6 
basil plants/replicate) basil density treatments were 
planted at the Seeds of Hope Community Garden in 
Fullerton, CA, which serves people experiencing low to 
marginal food insecurity. Height, tomato production 
and quality, and herbivory was recorded from planting 
through harvest. No differences were found among 
treatments in growth, tomato productivity and 
quality, or herbivory rates. However, a significant 
difference was found in the average mass of tomatoes 
produced; low-density basil tomato plants produced 
the smallest average tomato size. No evidence was 
found of increased pest reduction, tomato growth, or 
productivity, through high density companion planting. 
Given the importance of productivity for gardens that 
serve the community, these results suggest that garden-
level productivity can be increased through companion 
planting to help address local food insecurity.
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II. Monocultures

III. Pesticides

unsustainable practices that necessitates the need for 
additives. As a result, numerous ecological and human 
health threats stem from this form of food production.

The limitation of plant diversity and suitable habitats 
for many natural pest predators do not allow for the 
establishment of viable predator populations and help 
contribute to the increase in pest populations (Balmer 
et al., 2013). Without the necessary predators needed 
to control pest populations, and the close proximity 
and abundant supply of primary crops serving as 
food, crop specific pest populations can increase to 
detrimental proportions and result in high agricultural 
losses.

Moreover, the homogeneity of the monoculture 
design not only increases susceptibility to pests, 
but also the increases susceptibility to disease. The 
genetic diversity of crops within a given monoculture 
is very uniform and similar to one another, due to the 
expression of desirable phenotypes. This intensive and 
close grouping of genetically similar plants, results in 
an inability for these crop plants to adapt and combat 
certain diseases that may decimate an entire crop harvest.

Monocultures are the agricultural practice of growing 
one type of crop within a given area (Parloin, 2009). 
The homogeneity of monocultures allows for 
standardization of crop requirements, resulting in large 
agricultural yields. Growing one crop species minimizes 
harvesting labor, due to the use of developed 
harvesting machines. The use of monocultures as the 
primary means for agricultural food development 
possesses the potential for large agricultural yields. 
Although the very concept that defines monocultures 
and the practices needed to sustain consistent food 
production and harvests do come with the tradeoff of 
various ecological issues and potential public health 
concerns, critical analysis is needed in order to 
development alternative means to alleviate food security.

The defining characteristic of homogeneity within 
the monoculture design allows for mass production of 
crops, but the dense concentration of one type of plant 
over large areas is often not seen within nature, and 
thus human intervention is needed in order to sustain 
an adequate production from this system. Specific 
crop species possess specific nutrient requirements for 
proper developmental growth, and will often deplete 
the shallow topsoil of these specific nutrients. Topsoil 
depletion can lead to reduction in soil fertility and, 
in extreme cases where monocultures have been ill 
practiced, desertification of large areas of land. Certain 
practices target topsoil depletion through remediation 
of the soil by methods such as crop rotation. Although 
the practice of crop rotation has been accredited for 
some of the remediation of topsoil nutrients, this 
practice is often insufficient in restoring all of the 
nutrients lost by repeated monoculture practices, and 
thus is supplemented with additives such as fertilizers.

The uniform crop orientation that comprises 
a monoculture does not allow for the biodiversity 
of varying plant species. The limitation on the 
biodiversity of plants species is problematic for 
agriculture. Secondary plant species provide suitable 
habitats for and enable the development of natural 
predators of agricultural pests (Balmer et al., 2013). 

Monoculture agriculture is recognized for the 
standardization and mass production of crops, but 
the reduction in plant diversity in monocultures 
disrupts the natural ecological regulation between the 
predator and pest species (Parloin et al., 2012). With 
an abundant food source available in the monoculture 
design, and a reduction in plants that serve as suitable 
habitats for predatory insects pests populations 
are allowed to increase to proportions that can be 
detrimental to the agriculture industry. In response 
to the large growth rates of pest population within 
monocultures pesticide application is usually needed 
to compensate for the lack of natural pest predators 
and thus suppress the pest populations to manageable 
proportions. As defined by the USDA, pesticides are 
considered to be any chemical or substance, used 
to repel, mitigate, suppress, or destroy any pest 
(About Pesticides, n.d.). The use of pesticides may be 
contingent with the large agricultural yields associated 
with monocultures, but the practice of using pesticides 
with monocultures are responsible for multiple 
ecological and social issues.

Pesticides application can be administered 
through subterranean soil application or by foliar 
spray application. Larger crop areas associated with 
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IV. Intercropping

monoculture design typically rely on foliar pesticide 
application (Jusake et al., 2009). Foliar application is 
regularly used as the application method of pesticides 
within monocultures due to the efficiency of aerial 
application that can target large crop areas in shorter 
periods of time. This pesticide application method may 
help farmers administer pesticides over large areas in 
relatively short periods of time, but there is a trade off 
for the convenience of aerial foliar pesticide application. 
With aerial application of pesticides environmental 
factors such as wind and rain displace the applied 
pesticides, and disperse the pesticides into the 
surrounding environment resulting in environmental 
contamination (Carvalho, 2006).

The negative attributes of pesticide application 
cannot only be associated with environmental 
contamination. Pesticides are nondiscriminatory, 
and when applied pesticides can negatively impact 
the ecology within the agriculture design through 
the extermination of both targeted pest species and 
beneficial non-targeted pest species (Carvalho, 2006). 
The extermination of beneficial non-targeted species 
through foliar pesticide application parallels a positive 
feedback loop that further enhances the need for 
pesticide application. With a decrease in suitable habitat 
and the regular application of pesticides, the role of 
beneficial insects within the agriculture are disrupted.

The consistent application of pesticides possesses 
larger ecological impacts, which are evident by the 
development of pesticide resistance in pest species. 
Similar resistance build up has been seen in the 
medical field and different strains of bacteria such as 
methicillin resistant Staphylococcus aureas. Consistent 
exposure to pesticides impacts the natural selection 
and evolution of that pest species to develop pesticide 
resistance. Thus, new agricultural pests are evolving 
pesticide resistance, further increasing the need for 
more potent and toxic chemical based pesticides.

The application and use of pesticides in 
monocultures additionally creates social issues, in 
addition to ecological issues. When agricultural 
pesticides are applied to crops and proper food 
prepping practices are not made aware to the 
consumer, pesticide consumption results as the 
greatest process for pesticide intake values  (Jursake 
et al., 2009). With adverse health effects being well 

documented with pesticide exposure, the social and 
ethical issue regarding pesticide use is made apparent. 

Recognizing the inherit need for additive 
supplementation for consistent agricultural 
yields within monocultures emphasizes this as an 
unsustainable agricultural practice. The application 
of pesticides as a compensation for the inherent 
flaws created by the deformation of the ecological 
environment within monocultures lends itself 
responsible for the negative impacts monoculture 
practices have on the ecology, health, and social 
aspects of society. Examination of current monoculture 
practices epitomizes the need for other sustainable and 
alternative agricultural practices to increase societal 
food security.

Alternative methods for agricultural food production 
have been developed, but much discredit has been 
given regarding the potential importance to such 
alternative agricultural practices, such as the 
alternative agricultural practice of intercropping. 
Intercropping is the agricultural practice of growing 
one primary crop with one or more species of secondary 
plants, in order to receive a beneficial reaction or 
response on the primary crop plant (Parloin et al., 
2012). Intercropping differs from monocultures in 
multiple ways. Instead of the reliance of additives for 
consistent agricultural yields and productivity that 
monocultures use, intercropping is dependent on the 
ecological interactions and niches of specific plant 
species to benefit crop development and yield. Due 
to the reliance on the ecological interactions between 
plant species for promotions in agricultural yields 
and plant development, intercropping is recognized as 
a sustainable agricultural practice. Surprisingly the 
alternative agricultural practice of intercropping is not 
a new practice to agriculture. The recognition of the 
importance of intercropping and the development of 
one of the most well known intercropping examples was 
identified by the Native Americans, with the planting 
of maize, bean, and squash together. The planting 
of these three crops together is known as the “three 
sisters” and is a valid example for demonstrating that 
ecological niches and interactions that complement one 
another increase agricultural yields.
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V. Companion Planting

Materials and Methods

Planting Design

Large-scale agricultural food production by 
intercropping may not contribute significantly to 
societal food security, but smaller scale intercropping, 
known as companion planting, within urban gardens 
may have a promising future and importance in 
alleviating societal food insecurities. With the 
establishment of urban gardens becoming more 
common in communities, and relevant topics of 
discussion within members of the community, 
companion planting and advances in the understanding 
of companion plant interactions has the potential 
to alleviate societal food insecurities. Companion 
plants possess various interactions that coincide 
with the beneficial development of primary crops 
and include pest suppression, increased pollination, 
reduced weed prevalence, enhanced crop taste, and 
higher agricultural yields (Bomford et al., 2004). A 
recent studied conducted in 2004 examined different 
pests and their coinciding herbivore preferences on 
crops that were either intercropped or monocropped 
(Bukovinszky et al., 2004). The results from the study 
indicated that herbivore populations were greater on 
the monocropped plants than the intercropped plants, 
and that there were differences in crop preference 
depending on the developmental stage of the herbivore. 
This study demonstrates not only the tendency 
for monocropped plants to attract more pests, but 
also the complexity of the ecological interactions 
experienced in companion planting.

With companion planting possessing a significant 
potential to alleviate some societal dependence on 
monoculture agriculture and societal food insecurities it 
is a topic that needs more research and understanding 
in order to benefit the community and society. This 
study will investigate companion plant competition 
and how it affects tomato agricultural productivity, 
herbivory, and growth rates. Secondly, it will apply 
these findings into surrounding community gardens to 
increase tomato agricultural yield, and discourage the 
use of synthetic garden additives through sustainable 
companion plant practices.

Intercropping on large-scales for agricultural 
food production has not been well established for 
several reasons. When compared to monocultures, 
the manual labor involved in harvesting the crops 
in an intercropped environment is vastly greater 
due to the insufficient developments in harvesting 
machinery specific to intercropped environments. 
Intercropping has also not witnessed large-scale 
agricultural production because of the complexity 
associated with the ecological relationships. 
Intercropping recommendations are plentiful 
within the gardening community, but scientifically 
validated understandings of the various intercropping 
combinations and the ecological interactions remain 
to be defined.

On March 20, 2015 Solanum lycopersicon and Ocimum 
basilicum were planted grown in the Fullerton 
Arboretum greenhouse. Solanum lycopersicon and 
Ocimum basilicum seeds were grown in Pro-Mix 
Ulitimate Seeding Mix and watered every other day 
throughout the initial six week germination stage. 
Seedlings were transferred into 10 raised beds at the 
St. Andrew’s Seeds of Hope Community garden on May 
2. Soil pH was assessed and treated with peat moss 
prior to transplantation. Azomite supplementation 
was applied through subterranean application during 
transplantation of basil and tomato plants. Position 
of plant treatments within the raised beds was 
randomized. Stems within six inches of the soil were 
removed to discourage the onset of powdery mildew.

Three treatment groups were utilized to assess the 
effects of basil density on tomato growth rate, herbivory, 
and productivity. Recommended plant spacing with 
garden literature determined different treatment group 
planting designs. Recommended plant spacing between 
each tomato plant was 50cm. The recommended plant 
spacing between two basil plants was 25cm, and the 
recommended plant spacing between individual basil and 
tomato plants was also 25cm. Control treatment group 
planting design consisted of singular tomato plants with 
no plants planted within a 50 cm diameter. Low-density 
treatment group utilized an equilateral triangle planting 
design that incorporated three equally spaced basil 
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plants planted 25cm away from the central tomato plant. 
High-density treatment group consisted of six basil 
plants planted around one central tomato plant in a 
hexagonal planting design. Yielding to the recommended 
plant spacing, the hexagonal planting design utilized 
25cm spacing between each basil plant, and 25cm 
spacing between the one central tomato plant and its 
surrounding basil plants. Spacing between each tomato 
plant of different treatment groups was 100cm in order 
to minimize the aromatic effects of basil on neighboring 
treatment groups.

Growth rates of tomato took place over a ten week 
time period from May 18, 2015 to July 31, 2015. 
Tomato growth rates were determined by weekly height 
measurements. Height was measured from the soil to 
the topmost leaf.

Companion plant density effects of basil on tomato 
plant productivity were assessed through weekly 
harvest counting and weighing of ripe fruit. Ripe fruit 
was harvested weekly until September 15, 2015. Weekly 
harvest consisted of counting and weighing of ripe 
fruit and was centered on human consumption criteria. 
Harvested fruit was discriminated based on whether it 
was fit for human consumption. Fruit severely damaged 
was considered not fit for human consumption.

Aromatic effects of basil on tomato herbivory was 
assessed through visual pest surveys of aphids, and 
by the assessment of ripe fruit damaged by tomato 
hornworm herbivory. Aphid abundance was estimated 
through counting surveys that took place from June 1 
through July 31, 2015. Surveys consisted of randomly 
selecting one leaf from the low, middle, and high 
canopy regions of each tomato plant and counting the 
number of aphids on each leaf.

The effects of basil companion planting on tomato 
hornworm herbivory was assessed through a weekly 
harvest during an eight week harvest period from July 
11, 2015 until August 29, 2015. Ripe fruit negatively 
affected by hornworm herbivory was counted and 
weighed.

Growth Rate Assessment

Herbivory Assessment

Productivity Assessment

Results

 The effects of basil companion planting on tomato hornworm herbivory was assessed 

through a weekly harvest during an eight week harvest period from July 11, 2015 until August 

29, 2015.  Ripe fruit negatively affected by hornworm herbivory was counted and weighed.  

Productivity Assessment 

 Companion plant density effects of basil on tomato plant productivity were assessed 

through weekly harvest counting and weighing of ripe fruit.  Ripe fruit was harvested weekly 

until September 15, 2015.  Weekly harvest consisted of counting and weighing of ripe fruit and 

was centered on human consumption criteria.  Harvested fruit was discriminated based on 

whether it was fit for human consumption.  Fruit severely damaged was considered not fit for 

human consumption.  
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Figure 1.  Tomato plant growth rate as a function of varying basil densities.  Each point 
represents an averaged tomato plant height across different basil density treatment groups.  
Tomato growth rate was not significantly affected by different basil companion plant densities.   
Error bars are that of standard error. 

 

 

Figure 2.  Relationship between the average number of aphids per plant and different basil 
density treatment groups.  Error bars are of standard error.  Treatment groups with varying basil 
densities did not reveal significant differences in the average number of aphids per plant. 
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Figure 1.  Tomato plant growth rate as a function of varying basil densities.  Each point 
represents an averaged tomato plant height across different basil density treatment groups.  
Tomato growth rate was not significantly affected by different basil companion plant densities.   
Error bars are that of standard error. 
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Figure 1. Tomato plant growth rate as a function of varying basil 
densities. Each point represents an averaged tomato plant height across 
different basil density treatment groups. Tomato growth rate was not 
significantly affected by different basil companion plant densities. Error 
bars are that of standard error.

Figure 2. Relationship between the average number of aphids per 
plant and different basil density treatment groups. Error bars are of 
standard error. Treatment groups with varying basil densities did not 
reveal significant differences in the average number of aphids per plant.

Figure 3. Relationship between the average proportion of fruit 
damaged by hornworm herbivory and different basil density treatment 
groups. No significant difference in the proportion of fruit lost to 
hornworm herbivory between the different basil density treatment 
groups (Kruskal-Wallis chi-squared= 0.206, df = 2, p > 0.05). Error 
bars are of standard error.
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Contrary to previous expectations concerning 
the effects of interspecific plant competition in 
intercropped systems (Bukovinszky et al., 2004), 
differences in basil companion planting densities did 
not significantly affect the growth rates, productivity, 
and herbivory of tomato plants with the exception 
of a significant difference in the average fit fruit 
mass between the control and treatment groups. The 
results suggest that basil companion planting did 
not significantly affect tomato growth rates. This 
finding may be due to the fact that tomato plant 
heights were measured one week after the initial 
transplantation. The basil and tomato plants during 
this measurement time frame were not mature plants, 
and as a result, the early developmental stages and 
lack of fully develop canopy levels within the basil 
plants may have allowed for sufficient light levels 
to reach the tomato plants. If tomato plant heights 
were assessed a couple of weeks after the initial 
transplantation, the more developed basil canopy 
foliage may have interfered with the photosynthetic 
abilities of tomato plants through interspecific plant 
competition, and possibly contribute to different 
tomato growth rate results.

When compared to the original hypothesis of 
high basil companion planting densities negatively 
affecting productivity, the results reveal that tomato 
plants within the high basil density planting design 
treatment group did not experience significant 
differences in productivity. This finding supports the 
null hypothesis in that there is no relationship between 
reduced tomato productivity and high basil companion 
planting densities. Companion planting competition 
between basil plants in high densities and individual 
tomato plants was not significant enough to affect 
tomato productivity when the average number of fit 
fruit produced per plant, average fit fruit mass, and 
average proportion of fit fruit produced were analyzed. 
High basil companion planting may have not resulted 
in significant negative impacts on tomato productivity 
due to the trellie support systems used in this study. 
The trellie support systems may have allowed tomato 
plants to attain proper height to escape the shade 
imposed by the lower basil canopy levels, diminishing 
the negative impacts of sunlight resource competition 
on the tomato plants.

Figure 3.  Relationship between the average proportion of fruit damaged by hornworm herbivory 
and different basil density treatment groups.  No significant difference in the proportion of fruit 
lost to hornworm herbivory between the different basil density treatment groups (Kruskal-Wallis 
chi-squared= 0.206, df = 2, p > 0.05).  Error bars are of standard error. 

 

 

Figure 4.  Average number of fit fruit produced as a function of different basil treatment groups.  
There was no significant difference in the average number of fit fruit produced between 
treatment groups (Kruskal-Wallis chi-square = 3.9028, df = 2, p > 0.05).  Error bars are of 
standard error. 
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Figure 3.  Relationship between the average proportion of fruit damaged by hornworm herbivory 
and different basil density treatment groups.  No significant difference in the proportion of fruit 
lost to hornworm herbivory between the different basil density treatment groups (Kruskal-Wallis 
chi-squared= 0.206, df = 2, p > 0.05).  Error bars are of standard error. 
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Figure 5.  Average fit fruit mass across different basil density treatment groups.  There was a 
significant difference between the control and low density treatment groups (p < 0.05).  Error 
bars are that of standard error. 

 

 

Figure 6.  Average proportion of fit fruit produced per plant between different basil treatment 
groups.  There was no significant difference between the different treatment groups (Kruskal-
Wallis chi-squared = 0.0499, df = 2, p > 0.05).  Error bars are that of standard error. 
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Figure 4. Average number of fit fruit produced as a function of 
different basil treatment groups. There was no significant difference 
in the average number of fit fruit produced between treatment groups 
(Kruskal-Wallis chi-square = 3.9028, df = 2, p > 0.05). Error bars are 
of standard error.

Figure 5. Average fit fruit mass across different basil density treatment 
groups. There was a significant difference between the control and low 
density treatment groups (p < 0.05). Error bars are that of standard error.

Figure 6. Average proportion of fit fruit produced per plant between 
different basil treatment groups. There was no significant difference 
between the different treatment groups (Kruskal- Wallis chi-squared = 
0.0499, df = 2, p > 0.05). Error bars are that of standard error.

Discussion
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Results revealed significant differences in average 
fit fruit mass between control and low- density 
treatment groups. Absence of basil companion plants 
may have allowed for greater soil and sunlight resource 
availability for tomato plants in the control treatment 
group, and thus enable these tomato plants more 
resources to be allocated in fruit development. While 
this explanation gives a plausible account for the 
control tomato plants producing the largest average 
fit fruit mass, the lowest average fit fruit mass results 
exhibited by the low density treatment group does not 
coincide with the same theory. If the previous resource 
availability theory were to be the prevailing theory, the 
high basil density treatment group would be expected 
to possess the lowest fit fruit mass. Thus, the current 
experimental findings warrant greater investigation.

Contrary to popular belief basil did not appear 
to demonstrate repellent aromatic properties towards 
aphids or tomato hornworms. Basil companion planting 
did not significantly affect aphid or tomato hornworm 
herbivory. Aphid surveys did not reveal significant 
differences in aphid populations between the planting 
designs. In addition, analysis of the proportion of fruit 
negatively affected by tomato hornworm herbirvory 
revealed that planting designs did not vary significantly 
in tomato hornworms herbivory levels.

The use of small-scale urban gardens for food 
production provides a promising alternative for 
alleviating societal food insecurity. Alternative 
companion planting practices within urban gardens 
allow for sustainable food production, but space 
is often a limiting factor in this type of setting. 
Therefore, knowledge on best companion planting 
practices are needed for the greatest produce yields 
in limited areas. As a result of ecological interactions 
between plant species, companion plant competition 
is a concern when different plant species are grown 
in close proximity to each other. While this study 
did not reveal many beneficial findings between 
basil companion planting and tomato growth rate, 
productivity, and herbivory, this study did reveal 
that high density basil companion planting did not 
negatively affect tomato growth rate, productivity, 
and herbivory. In the context of urban gardens, the 
findings from this study indicate that high basil 
companion planting does not result in negative 
competition interactions between the two different 
plant species. Thus, community garden can grow 
tomato plants with relatively high basil densities for 
maximum food production in small garden settings.

Conclusion
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The Effect of Learning Styles on Student Performance in an
Undergraduate Biology Course

There is no single right way to learn and each 
student will acquire and integrate information in 
their own, unique way. The characterization of how 
an individual learns is their learning style. A learning 
style is the way that a person receives, processes, 
and recalls information most effectively (James and 
Gardner, 1995) It is also the way in which students 
are influenced by different factors around them such as 
their environment, their psychological and emotional 
makeup and their various needs (Ballone and Czerniak, 
2001). In an academic setting, students primarily 
receive their information from their instructors. Felder 
(1993) mentions that if the teaching and learning 
styles are compatible between student and teacher, the 
students perform better. As an instructor, being able to 
adapt the curriculum to accommodate every learning 
style will ensure that each student can capture the 
information one way or the other (Edens, 2014).

CSU Fullerton offers a lower division cellular and 
molecular biology class (Biology 151) as part of the 
lower division biology core biology for the major. The 
course is a prerequisite for upper division biology classes.

The Felder-Silverman Learning/Teaching Style 
model focuses on the way that students receive their 
information (Felder and Silverman, 1988). The learning 
style categories are grouped into antagonistic pairs: 
Active-Reflective, Visual-Verbal, Sensing-Intuitive and 
Global-Sequencing. Science courses in general present 
a large amount of information that students often 
have a hard time learning. Biology courses contain a 
lot of processes, vocabulary terms and concepts. Being 
aware of what type of learning style is most effective 
in obtaining large amounts of information will benefit 
the students because they would know how they learn 

Precious Daileg
Advisor: Dr. Merri Lynn Casem

Abstract Introduction

Not everyone learns in the same way. In a classroom, 
different students have different learning styles. The 
manner in which a course is taught may favor one 
learning style over another. Therefore, students with 
a learning style that aligns with a course’s pedagogy 
should perform better in that course. Students in 
Biology 172 were asked to complete a Learning 
Styles Assessment (https://www.engr.ncsu.edu/
learningstyles/ilsweb.html). The survey uses a 44 
item questionnaire to place students along a scale 
of +11 to -11 for learning style categories: Visual-
Verbal, Sequential-Global, Active- Reflective, and 
Sensing-Intuitive. A student’s score along that scale 
indicates whether they are “well- balanced”, or show 
a “moderate preference” or a “strong preference” 
within each of the learning style categories. Students 
in a first semester cellular and molecular biology 
course were divided into three populations based on 
their overall performance in the lecture portion of 
the course. High performing students were defined 
as having earned at least an 80% in lecture. Average 
performing students were characterized as having 
earned between 70-79% and under-performing 
students earned below 70%. The pattern of learning 
style preferences for each population overlapped, 
indicating that performance in the class was 
independent of a student’s learning style preferences. 
Interestingly, as a group, students in the course 
showed a strong preference for “sensing” and “visual” 
learning; suggesting that these students will do best in 
a class that emphasizes real-world connections while 
using visual aides to illustrate course concepts.

Department of Biological Science, California State University, Fullerton
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Methods

Results

best. Some students struggle through the course either 
because they have not found an effective study habit 
or they do not know how to utilize their prevalent 
learning style. They accept the way the information is 
presented to them and do not find other ways in which 
they could understand the material better. The way 
that a class is taught depends on how the instructor 
learned the subject themselves and how they found it 
most effective to teach (Hawk and Shah, 2007). Thus, 
this creates a difference in teaching styles between 
instructors teaching the same subject. Both factors 
greatly affect the way that a student effectively learns 
the material in a course.

The learning styles that are most effective when 
learning material in a science course are active, visual, 
sensing and sequencing (Tanner and Allen, 2004). 
Students’ success has been shown to be higher when 
they are receiving the information in a their preferred 
learning style (Ballone and Czerniak, 2001). However, 
this is not saying that those whose learning styles differ 
from that of the instructor or do not align with the 
pedagogy of a course will never succeed. Students will 
always need to be able to adapt to various educational 
situations and turn the material into something they 
can easily internalize. In this study, the learning styles 
of students in an undergraduate biology was assessed to 
determine if there was a correlation between learning 
style preference and student success.

CSUF undergraduate students enrolled in a lower 
division biology course were given the opportunity to 
complete the North Carolina State University-hosted 
online Learning Styles Assessment (https://www.engr.
ncsu.edu/learningstyles/ilsweb.html) as an extra credit 
assignment. A total of 233 students over two semesters 
(fall 2014 and fall 2015) participated in the assessment. 
The assessment is composed of 44 questions asking 
students to indicate their preferences or actions to a 
range of situations related to learning. The website 
analyzes the students’ responses and generates 
individualized reports illustrating the student’s 
preferences along a scale of -11 to +11 for each of the 
four learning style antagonistic pairs. A score of -3 to 

+3 indicates that the student is well-balanced between 
the pair of learning styles. A score of -7 to +7 indicates 
a moderate preference to one learning style over the 
other. Scores in the range of -11 to +11 indicate a 
strong preference for one of the paired learning styles.

Individual student reports were collected by the 
instructor. Numeric scores for each of the four learning 
style categories was coded into an Excel spreadsheet. 
At the end of the semester, students were assigned to 
one of the three populations (high performing, average 
performing or underperforming) based on their overall 
performance in the lecture portion of the course. The 
distribution of students along the -11 to+11 preference 
scale for each antagonistic learning pair was determined 
and graphed using Excel. All work was performed in 
accordance with an approved IRB protocol.

The assessment used in this research project 
characterizes student learning styles for four 
antagonistic pairs; Active-Reflective, Visual-Verbal, 
Sensing-Intuitive, and Sequential-Global. The majority 
of students in this first semester biology majors’ course 
demonstrated a balance between active and reflective 
learning styles (Fig. 1). A similar pattern was found 
for sequential and global learning styles, although 
there was a slight preference towards sequential 
learning (Fig. 4). This population of students showed 
a stronger preference for visual and sensing learning 
styles compared to verbal and intuitive learning styles, 
respectively (Fig. 2 and 3).
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Figure 1. Active learners are those who learn best when they are actively applying or using their knowledge (ie, 
explaining it to others). Reflective learners prefer to process the information quietly by themselves. Overall student 
population showed that they are well-balanced between the Active and Reflective Learning Style. 
 

 
Figure 2. Visual learners obtain information best with pictures, diagrams, timelines or anything they can see. Verbal 
learners prefer to acquire their information through written or spoken material such as lectures or discussions. 
Overall student population showed a preference in the Visual Learning Style. The High Population had an equal 
value between visual learning style preference and being well-balanced. The Average and Low populations showed 
a moderate preference to the visual learning style. 

  
Figure 3. Sensing learners retain information that are based on facts and have a low tendency for change or 
surprises. They are focused on learning the details and good with memorization. Intuitive learners are innovative and 
like to find new ways to look at things. They focus more on the larger concept rather than the details. Overall student 
population showed a preference toward the Sensing Learning Style.  
 

 
Figure 4. Sequential learners understand material that is presented in logical steps. Global learners obtain various 
pieces and parts of the material, initially not aware of their connections. Eventually, all the information will just 
“click” in their head. The High and Average Populations had moderate preference to the sequential learning style.. 
The Low population was well-balanced. 
 
 Analysis of the learning style data relative to overall performance in the course failed to show any 

difference in the preferences of any of the populations [Figs 1-4]. In general, students from each of the 
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Figure 1. Active learners are those who learn best when they 
are actively applying or using their knowledge (ie, explaining it to 
others). Reflective learners prefer to process the information quietly 
by themselves. Overall student population showed that they are well-
balanced between the Active and Reflective Learning Style.

Figure 1. Sensing learners retain information that are based on facts 
and have a low tendency for change or surprises. They are focused on 
learning the details and good with memorization. Intuitive learners 
are innovative and like to find new ways to look at things. They focus 
more on the larger concept rather than the details. Overall student 
population showed a preference toward the Sensing Learning Style.

Figure 4. Sequential learners understand material that is presented 
in logical steps. Global learners obtain various pieces and parts of 
the material, initially not aware of their connections. Eventually, all 
the information will just “click” in their head. The High and Average 
Populations had moderate preference to the sequential learning style.. 
The Low population was well-balanced.

Figure 2. Visual learners obtain information best with pictures, 
diagrams, timelines or anything they can see. Verbal learners prefer to 
acquire their information through written or spoken material such as 
lectures or discussions. Overall student population showed a preference 
in the Visual Learning Style. The High Population had an equal value 
between visual learning style preference and being well-balanced. The 
Average and Low populations showed a moderate preference to the 
visual learning style.
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The distribution of students’ scores for each of the 
populations across each of the learning style scales 
overlapped indicating that student success in the 
course was not correlated with a student’s learning 
styles. Other factors that might impact student success 
include students’ background and their early learning 
experiences (Tai, et al, 2005).

The majority of students in all three performance 
groups fell within the definition of “well- balanced” for 
the scale that describes Active versus Reflective learners. 
Active learners do best if they can discuss or apply 
information while reflective learners prefer to think 
about information. A slightly greater proportion of 
average performing students demonstrated a preference 
for active learning. In a biology course, most of the time 
students are bombarded with facts each time they go 
to class. The inclusion of in- class activities, “clicker” 
questions and small group work would support active 
learners. Students also have access to Supplemental 
Instruction in which their application of their knowledge 
can be further developed and used for their benefit 
through small discussion and activities with their peers. 
Furthermore, science classes primarily include various 
lab work that engages the mind as the students learn 
different skills and concepts.

As a group, students in this course showed a 
preference towards visual learning. Visual learners 
benefit from the use of pictures, diagrams, flow charts 
and demonstrations. A small number of low performing 
students demonstrated a preference of verbal learning. 
These individuals would benefit from written or spoken 
instruction. Lectures and assigned readings are a regular 
part of the learning environment for this class, so these 
students should have had their needs met. The course also 

included lots of visual information provided in PowerPoint 
slides and some demonstrations. There is also an increased 
amount of access to visual aids such as videos, animations 
and pictures to help portray concepts that are not well 
understood in class (Tanner and Allen, 2004).

A majority of students showed a preference toward 
the sensing learning. Sensing learners do very well with 
memorizing facts and details. These students benefit in 
this class because biology is full of facts and details. The 
majority of the exam includes recall questions which should 
be easy to answer for these types of learners. Though 
memorization is a proven strength, it is also crucial for 
them to understand the broader concepts of the topics. 
This can help improve their critical thinking skill and apply 
it through problem-solving.

Most students showed a preference for sequential 
learning. The low performing students were “well-balanced” 
between the two styles. Sequential learners understand the 
material when it is presented in logical steps. Since Biology 
contains various processes with steps, sequential learners 
could be able to grasp the topics faster than others. Global 
learners will require more guidance in terms of developing 
the connections to the pieces they have acquired.

Although students have different aspects that make 
up their learning styles, it is still the responsibility of 
their instructor to create a multifaceted curriculum that 
will accommodate every learning style (Edens, 2014). 
In this case, the instructor was able to administer the 
information in a way that every type of learner can 
benefit from. Extra resources were also made available 
online for the students to use. This could be a possible 
explanation as to why student success is not correlated to 
their learning style. The diversity of how the information 
was presented was able to create an “equal ground” where 
other factors, such as self-motivation and perseverance, 
could have contributed more to the students’ success. 
In this case, it is up to the students to utilize their 
knowledge, the available resources and their learning 
styles to get their desired grade. Administering this 
survey early in the semester could be beneficial in that, 
they can be aware of which learning style they most likely 
have. The instructor can provide different study tips that 
each type of learner can utilize to optimize their study 
time and, hopefully, improve their grades (Leithner, 
2011). For future studies, data will be collected from non-
science majors to compare their learning styles.

Discussion

Analysis of the learning style data relative to overall 
performance in the course failed to show any difference 
in the preferences of any of the populations [Figs 1-4]. 
In general, students from each of the performance 
populations can be found across the preference scale. The 
few exceptions were a small number of underperforming 
students that manifested a strong preference for verbal 
(n=1), sequential (n=2) or global (n=1) learning styles.
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The Relationship between Food Safety and Handling Knowledge and 
Practice Among Elementary Aged Children

Foodborne illnesses are responsible for 48 million 
Americans falling ill, 128,000 hospitalizations, and 
3,000 deaths every year (CDC, 2012). Despite efforts 
to prevent foodborne illnesses, there are still outbreaks 
occurring all over the United States (Merkle, 2014). 

Desiree Jacoby
Advisor: Dr. Joel K. Abraham

Abstract

I. Introduction

Despite the programs and information provided to 
the public, there is still an increase in foodborne 
illness outbreaks every year. Knowledge of proper 
food safety and handling practices is the key to 
preventing these outbreaks. However, knowledge 
of food safety and handling may not translate into 
actual practice, which could contribute to foodborne 
illness outbreaks. The relationship between food 
safety and handling practice and knowledge has 
been examined in adults, college students, high 
school students, and even middle school students, 
but not in elementary aged students. An evidence-
based intervention was designed to learn about 
their knowledge and practice habits as well as teach 
the students proper food safety and handling in 
hopes of improving their handling and food safety 
knowledge and skills. A questionnaire and card 
sorting activity were given out one week prior to 
the lesson and two weeks after the lesson. The 
lesson covered proper washing, separating, and 
chilling according to the CDC. Results from the 
questionnaire and card sorting activity showed no 
relationship between knowledge and practice however 
personal observations during the intervention showed 
otherwise. 

Foodborne illnesses, caused by microorganisms such 
as Salmonella, can produce severe symptoms including 
diarrhea, abdominal cramps, and nausea (CDC, 2012). 
Most adults can fight off invading microbes and recover 
with ease; however children are more susceptible 
to foodborne illnesses than adults (CDC, 2012). 
Commonly consumed items by children can spread 
foodborne illnesses. Apple juice batches, for example, 
have led to E. coli poisoning (Cody, et al., 1999). In 
this case, seventy people were infected from the apple 
juice; 25 of whom were hospitalized, 14 hemolytic 
uremic syndromes, and one death. Traces of arsenic 
have also been found in apple juice in amounts higher 
than the Food and Drug Administrations recommended 
safe levels (Marshall, 2014). Children that are 
uneducated in proper food safety and handling are at 
high risk of acquiring dangerous foodborne illnesses.

	 There are steps that are being taken to 
prevent such outbreaks from recurring. Those who 
work with food are required to take a food safety 
and handling course and be certified their entire time 
of working with food (ServSafe, 2012). The course 
must be renewed every 2-4 years and workers can be 
asked questions by authoritative workers throughout 
their employment to make sure they remember the 
information from their training. For those who handle 
food professionally, there is shown to have been a 
decrease in microbiological counts after training was 
completed (Soares, et al., 2013). Even though providing 
training courses for those who work with food is 
important, it is also important to remember that 
everyone works with food at some point in their lives 
and without knowledge, people are at risk of acquiring 
a foodborne illness.

Department of Biological Science, California State University, Fullerton
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II. Materials and Methods

I developed a short questionnaire to measure 
student knowledge of fruit and vegetable handling and 
safety, rates of fruit and vegetable handling, as well 
as awareness of food-borne illnesses. Through IRB 
(Institutional Review Board), I was given approval 
for this protocol in addition to working with the 
teachers to get parental consent and student assent. 
The study was performed at a local elementary 
school in southern California with students ranging 
in ages between six and nine years old. I observed 
the students food handling practices using a card 
sorting activity to understand if they take their 
knowledge and put it into practice. I used a hands-on 
tutorial designed around the Next Generation Science 
Standards within a one hour lesson plan upon which 
students will be introduced to proper food handling 
and safety, microorganisms, and how to separate foods 
appropriately.

The training that is being provided as well as 
the knowledge gained, is not being put into practice 
(Rowell, et al., 2013). Rowell et al. performed pre and 
post training and observation for managers in three 
different grocery stores. The results showed that there 
was no significant change in store performance by 
the managers. There is also an economical benefit for 
putting the gained knowledge into practice (Ribera, 
et al., 2012). Ribera et al. found that it costs more for 
producers to deal with the outbreaks after they occur 
than to prevent them. This reveals a dissociation in 
knowledge and practice specifically in adults.

There is an insufficient amount of knowledge being 
provided to people on food safety and handling. People 
regularly underestimate the importance of food safety 
and handling (Machado, et al., 2014). For instance, 
people often underestimate the danger of foodborne 
illnesses from fruits and vegetables relative to meats 
(Berger, et al., 2010). 

Machado et al. (2014) found that there is a weak 
perception on proper food safety and its importance by 
the food-handlers in schools, which can affect student’s 
health. Children, who are already highly susceptible to 
foodborne illnesses, have an insufficient knowledge on 
proper food handling as well as a lack of seriousness 
towards the issue of food safety. Quick et al. (2013) 
found that middle school youth had insufficient 
food safety knowledge. Although students had been 
instructed to wash hands and food, information was 
not provided about when and how hand washing should 
occur. Students also showed a range of attitudes about 
the practice. These studies show that there might be 
a foundation to build on when teaching youth, but 
teaching is needed nonetheless.

When it comes to education, adults have learned 
so much and built routines and habits that are 
hard to break with age (Rothman et al., 2009).  On 
the other hand, according to Eves, et al. (2010), 
behaviors that are taught a young age can be changed 
more easily and are resistant to then changing with 
age compared to being taught at a later age. With 
this in mind, reaching out and teaching children in 
elementary school when these skills are being taught 
and developed might be key to preventing foodborne 
illnesses later once they grow up. Teachers in schools 
are teaching little about food safety and handling and 

are generally basing it on personal knowledge and 
experience rather than on fact and research findings 
(Eves et al., 2010).

With an increase in interactive gardens at 
schools (Ozer, 2007), there are additional dangers and 
opportunities regarding food safety. Although more 
children are now participating in food handling and 
preparation, lessons on food safety may be better 
contextualized, which can improve learning outcomes 
(Ozer, 2007). These learned practices and knowledge 
can be brought home with them and their families can 
learn these proper skills as well. 

In this study, the relationship between food safety 
and handling knowledge and practice in elementary 
aged children was explored. The goal was to determine 
student’s current knowledge on proper washing and 
handling of fruits and vegetables and develop an 
evidence-based intervention to teach food safety and 
handling and improve food knowledge and practice 
in elementary-aged children. These children are at 
an ideal age to learn new ideas and concepts, and 
therefore by teaching them about food safety and 
handling, foodborne illness outbreaks can hopefully be 
prevented in the future.
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Table 1. Next Generation Science Standards alignment with intervention.

Table 2. Demographics of students regarding to food habits and previous endeavors.

MS-LS1-1

Code Performance Expectation Disciplinary Core Idea

LS1.A

3-LS4-3

LS4.C

3-LS4-4

4-PS4-3

4-ESS3-2

3-5-ETS1-3

Worked in the School Garden
Help Adults Prepare Meals
Vegetarian
Vegan
Had a Previous Food Safety/Handling Lesson
Grade
1st
2nd
3rd

100%

86%

7%

7%

79%

36%

36%

29%

0%

0%

0%

57%

0%

43%

57%

100%

86%

7%

7%

79%

Boy
Girl

Yes No N/A

Gender

Conduct an investigation to provide evidence 
that living things are made of cells; either one cell 
or many different numbers and types of cells.

Construct an argument with evidence that in a 
particular habitat some organisms survive well, 
some survive less well, and some cannot survive 
at all.

All living things are made up of cells, which is 
the smallest unit that can be said to be alive. An 
organism may consist of one single cell (unicellular) 
or many different numbers and types of cells (mul-
ticellular). (MS-LS1-1)

For any particular environment, some kinds of 
organisms survive well, some survive less well, and 
some cannot survive at all (3-LS4-3).

When the environment changes in ways that affect 
a place’s physical characteristics, temperature, or 
availability of resources, some organisms survive 
and reproduce, others move to new locations, yet 
others move into the transformed environment, 
and some die (LS2.C). Populations live in a variety 
of habits, and change in those habitats affects the 
organisms living there (LS4.D).

Different solutions need to be tested in order to 
determine which of them best solves the problem, 
given the criteria and the constraints (ETS1.C)

A variety of hazards result from natural processes. 
Humans cannot eliminate the hazards but can take 
steps to reduce their impacts (ESS3.B).

Different solutions need to be tested in order to 
determine which of them best solves the problem, 
given the criteria and the constraints (ETS1.C).

Make a claim about the merit of a solution to a 
problem caused when the environment changes 
and the types of plants and animals that live 
there may change.

Generate and compare multiple solutions that use 
patterns to transfer information

Generate and compare multiple solutions to 
reduce the impacts of natural Earth processes on 
humans.

Plan and carry out fair tests in which variables 
are controlled and failure points are considered to 
identify aspects of a model or prototype that can 
be improved.
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When seeking to change practices, lectures are rarely 
an effective form of teaching; hands-on tutorials tend 
to lead to greater changes in behavior (Rothman et 
al., 2009). Thus, I sought to develop a more interactive 
lesson that would allow students to engage with the 
material and bring their own perspectives into the 
lesson. The lesson plan was aligned with the Next 
Generation Science Standards (NGSS) and consisted 
of three main topics including washing, separating, 
and chilling. The washing portion of the lesson plan 
included washing their hands, surfaces, and utensils 
before and after handling food. The separating portion 
focused on separating work spaces and utensils when 
working with food as well as separating fruits and 
vegetables and meats. The chilling portion comprised of 
when food goes in the refrigerator and pantry, checking 
when food needs to be thrown away, and knowing when 
to put food away after being prepared. The three main 
topics were chosen based on student comprehension of 
the material and recommended topics by the CDC. The 
materials that were used for the lessons were pictures 
of microorganisms that are the common cause of 
foodborne illnesses, pictures of pantry and refrigerator 
items for the students to separate accordingly, and a 
matching game of food hazards.

Tutorials Demographics

Practice

Knowledge

Assessment

III. Results

Of those who participated in the study, 72% were in 
1st or 2nd grade, while 29% were in 3rd with 43% of 
those students being male and 57% being female (Table 
2). All of the students who participated in the study 
and whose data was used had worked in the school 
garden before (Table 2). Only 14% of students claimed 
that they do not help out adults when it comes to 
preparing meals as well as 21% of students had not had 
a previous lesson in food handling and safety (Table 2). 
Interestingly, one student claimed to be a vegetarian 
and another student claimed to be vegan.

For the card sorting activity, there was an increase in 
the correct order of the cards for the first scenario but 
a decrease in the correct order for the second scenario.

For the questionnaire, there was an increase in 
responses that were non applicable because they either 
did not answer the question or their answer could not 
be interpreted. There was an overall increase in the 
answer “Never” from pre to post questionnaire. On the 
contrary, there was a general decrease in the answer 
“Every Time” from pre to post questionnaire. There 
wasn’t much of a change in the response “Sometimes” 
from pre to post questionnaire. The in class worksheet 
provided more insight into students’ knowledge on 
microorganisms and food safety. Results showed 63% of 
the students drew bacteria and 75% said that infectious 
microorganisms make them sick (Table 3). Of all of the 
students who participated, 16% of the students said 
that they can give you cancer or that they fight blood 
cells (Table 3). Two students talked about how they 
can make you sick but that’s why we wash our hands 
so that doesn’t happen and that some microorganisms 
are good for us (Table 3). One student claimed that 
infectious microorganisms are good on food but it’s 
when we eat them that they become bad and make us 
sick (Table 3).

A pre and post questionnaire was given to students 
which consisted of questions asking students about if 
they think anything lives on their fruits and vegetables 
and if so what as well as questions pertaining to 
handling and washing practices of their fruits, 
vegetables, hands, and surfaces. The questionnaire was 
given one week prior to the lecture and two weeks after 
the lecture. 

The students were observed before and after the 
lecture via a card sorting activity. The sorting of the 
cards according to the given scenario was documented 
as to prevent a possible bias in their questionnaire 
responses. I compared results from the pre and post-
intervention questionnaires and my observations of 
how students order the cards before and after the 
intervention.
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In this study, there does not appear to be a direct 
relationship between food safety and handling 
knowledge and practice. Some problems with the data 
may come from the fact the students were organized 
into groups for the pre-questionnaire because of 
the available seating so it is possible that they 
worked together and didn’t want to be embarrassed 
by answering “Never” or “Sometimes”. However, 
the seating for the post-questionnaire was more 
spread out and individualized so that the students 
worked more on their own and more quietly. These 
may have obscured some of the students’ answers 
from pre- to post-questionnaire. Another problem 
faced with the card sorting activity was that the 
students had difficulties understanding the activity 
despite the numerous examples provided to help 
them comprehend what was being asked of them. 
A limitation to the study in general was that there 
were more 1st and 2nd graders than there were 3rd 
(Table 2) so maybe they were not at a proper level 
to understand how the card sorting activity was done 
and how to answer the questions on the questionnaire.

 For the questionnaire, the students’ scored more 
poorly after the lesson (Figure 1). The questions 
were designed so that the ideal answer for all of the 
questions would be all the time but majority of the 
students answered never when they filled out the 
post-questionnaire after the lesson. The students also 
changed answers from pre to post questionnaire that 
were surprising. For example, for the pre questionnaire 
the students helped out and cooked more often than 
they did for the post questionnaire (Figure 2). This 
could be that after taking the questionnaire for a 
second time, students had a better understanding of 
what the question was asking and therefore answered 
differently. However, only some answers improved 
from pre to post questionnaire. The question about 
whether or not the students thought anything lived 
on their fruits and vegetables improved from more 
students saying yes after the intervention than before 
(Figure 3). From what was observed during the entire 
study, the students really did know how to properly 
wash their hands, when to do it, and did it quite 
often. However, their responses on the questionnaire 
did not reflect that same knowledge. 

The card sorting activity did not seem to accurately 
show their practice and behavior when it came to food 
safety and handling. There were only a few students who 
had consistent answers for the activity, but a majority of 
the students had the wrong order or did not participate 
in the activity (Figure 4). Regardless of this, it seemed 
that the students’ correct order of the cards increased 
from pre to post activity for the first scenario, but there 
was a decrease in the amount of cards put in the correct 
order for the second scenario (Figure 5). One explanation 
for this is that the second scenario was made to be a little 
more complicated than the first scenario so their level of 
understanding may have not been fit for that scenario. 

It is interesting to note the students responses on 
the in class worksheet because they displayed a lot of 
knowledge in their answers and drawings that does not 
seem to be reflected in their questionnaire and card 
sorting answers. The students knew how infectious 
microorganisms can make people sick, can cause cancer, 
and that they even fight our blood cells and can lead to 
death if not taken care of properly (Table 3). As for their 
drawings, although it is difficult to say exactly what they 
intended to draw, it seemed like most of the students 
drew bacteria with some worms and even a couple of 
viruses. What is notable here is that all of the students 
had an answer and drew something for the worksheet 
showing that they knew about infectious organisms and 
how they can make us sick, however only about half 
of them stated that they thought that something lives 
on their food. This response changed to all but a few 
students answering yes to something living on their food 
for the second questionnaire after the lesson plan. In 
future studies, the wording of the worksheet should match 
the wording on the questionnaire and refer to something 
living on their food as microorganisms instead or vice 
versa for the worksheet.

IV. Discussion

Table 3. In Class worksheet student responses.

Bacteria
Virus
N/A

Makes you sick
Gives you cancer
Kills you
Germs fight red blood cells

What do infectious microorganisms do to you?

What do you think an infectious microorganism looks like?

63%

4%

33%

75%

8%

8%

8%
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Overall, the data collected from the 
questionnaire and card sorting did not match my 
personal observations. The data shows that there 
is no relationship between food safety and handling 
knowledge and practice in elementary aged children. 
This is most likely due to the age group, the questions 
being asked, and the card sorting activity difficulty 
level that made the data the way that it is. For future 
studies, more care should be taken in the wording 
and structure of the intervention as to not confuse 
the students. Also, the setup of the students in the 
classroom proved to be an essential component in that 
separation of the students from each other would most 
likely have greatly benefited the honesty of the answers. 
Additional research is required to fully understand the 
extent to which elementary aged students put their 
knowledge into practice and the possible ways that 
curriculums can be altered to help students put their 
knowledge into practice.

Figure 4. Percentage of students who put the correct cards in the 
correct order from scenario 1, pre-intervention and post-intervention

Figure 2. Student response to the question, "How often do you cook 
or help with cooking?" from questionnaire, pre-intervention and post-
intervention.

Figure 3. Student response to the question, "Do you think anything 
lives on your fruits and vegetables?" from questionnaire, pre-
intervention and post-intervention.

Figure 1. Student response to the question, "Do you wash your hands 
before touching food?" from questionnaire, pre-intervention and post-
intervention.

Figure 5. Percentage of students who put the correct cards in the 
correct order for scenario 2, pre-intervention and post-intervention.
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Biochar Feedstock Effects on Crop Yield: A Comparison Between Palm 
Frond and Commercial Biochar

Jarret Jones
Advisor: Dr. Joel K. Abraham

Abstract

Palm trees, found in all counties in Southern California, regularly shed their fronds. 
These fronds are difficult to dispose through municipal waste streams, and methods such 
as shredding and composting are ineffective. The use of palm fronds as feedstock for 
biochar, which is charcoal used as a soil amendment to improve plant growth, may be a 
possible solution. The aim of this research was to compare palm frond biochar to that of a 
commercially available biochar with respect to crop yield in three common garden plants: 
radish (Raphanas sativus), Genovese basil (Albahaca genovesa), and spinach (Spinacia 
oleracea). Palm fronds were collected and converted into biochar with a custom made kiln. 
Three treatments were established: Palm biochar, commercial biochar, and a non-biochar 
control (n =10). Soil in the biochar treatments was amended with 70 grams of ground biochar. 
Plants were harvested at the appropriate time for each crop, and dry biomass was measured. 
Control radishes were significantly larger than radishes from either biochar treatment, while 
commercial biochar radishes were significantly smaller than the two other treatments (p < 
0.001). Overall poor plant growth made inferences about the impact of biochar difficult. 
However, the reduction of plant size in both biochar-amended treatments may have been due 
in part to insufficient nutrients in the soil and specific application methods used. However, 
the higher growth of radishes in palm frond versus commercial biochar suggests that further 
research on palms as a biochar feedstock is warranted.

Department of Biological Science, California State University, Fullerton
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Assessing CSUF Student Knowledge and Practices of Safe Produce 
Handling

Phyllis Liang
Advisor: Dr. Joel K. Abraham

Abstract I. Introduction

Fruit and vegetable consumption has numerous health 
benefits and United States health policy recommends 
that most Americans increase consumption. However, 
fruits and vegetables can be contaminated with 
heavy metals, pesticides, and microbes, which can 
lead to food-borne illnesses. Although proper food 
handling practices can mitigate these concerns, many 
consumers do not know about or regularly practice 
safe produce handling. Unsafe produce handling 
practices appear to be particularly common in some 
sub-populations, including college graduates. It is also 
important to note that many students begin to cook 
for the first time in college, and thus, it is important 
to understand, and ultimately improve, their produce 
handling practices and knowledge. In this study, 
produce handling knowledge and practices in
undergraduate students at California State University, 
Fullerton (CSUF) was documented. A web-based 
survey was administered to student volunteers on 
their produce handling knowledge and practices. 
Although CSUF students report that they regularly 
wash produce in general, most neglect to wash 
fruits that are peeled before consumption, such as 
cantaloupes and bananas, which still pose health 
threats. Students were most aware of chemical-
based and microorganismal contaminants, but 
rarely acknowledged the possibility of heavy metal 
contamination. Reported produce handling practices 
did not differ between organic and conventional 
produce. Students appear to lack basic knowledge of 
proper produce washing methods. This knowledge 
can help develop future food handling tutorials and 
intervention to improve the knowledge and practice of 
produce handling procedures.

Fruit and vegetable consumption has numerous 
benefits for consumer health, such as supplying 
important nutrients to the body and lowering the risks 
to many diseases (CDC, 2013). However, fruits and 
vegetables are susceptible to contamination as they 
are grown, harvested, packaged, and shipped before 
entering the consumer’s home; throughout this process, 
there are a myriad of opportunities for contamination 
by microbes, heavy metals, and pesticides (Core, 
2002). These contaminants can lead to serious 
health repercussions when ingested. For instance, 
microorganisms, such as Escherichia coli O157:H7, 
Salmonella enteritis, and Listeria monocytogenes, 
can cause illness or even death when ingested by 
contaminated foods (Kilonzo- Nthenge, Chen, and 
Godwin, 2006). For foodborne illnesses, the Center for 
Disease Control (CDC) (2012) estimates about 63,000 
cases of E. coli, 42,000 cases of Salmonella, and 1,600 
cases of Listeria are reported per year in the United 
States. Heavy metal contaminants such as lead, iron, 
zinc, and cadmium are quite common in produce 
grown in soil and can cause numerous neurological 
problems when ingested (Ismail, 2005). Pesticide 
contamination on produce can negatively affect the 
nervous (Weiss, 2004) and reproductive systems 
in humans as some pesticides are persistent and 
accumulate in the body causing long-term exposure 
(Keikotlhaile, Spanoghe, and Steurbaut, 2010).

Although consumers may be aware of some 
potential contamination sources, there are many non-
intuitive sources of contaminants that are overlooked 
(Losasso et al, 2012). For example, plant uptake of 
heavy metals from the soil is a common concern in 
urban environments (Sterrett et al, 1996). However, 
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Sterrett et al (1996) found that consuming urban 
garden lead contaminated soil far outweighs the danger 
of consuming produce that has taken up lead. To 
reduce heavy metal ingestion, washing the produce 
before consumption is recommended. To address 
consumer pesticide concerns, the USDA Pesticide 
Data Program (PDP) tests for the overall pesticide 
residue on produce to ensure that pesticide levels are 
below the tolerance levels established by the U.S. 
Environmental Protection Agency (USDA, 2013). 
The PDP emulate consumer practices and wash the 
produce samples before testing the pesticide residue 
(USDA, 2013). The PDP found that over a nine-year 
period, over 90 percent of the sampled peaches, apples, 
and strawberries had average detectable pesticide 
residue (Punzi et al, 2005).This means that consumers 
regularly consume small amounts of pesticide residue 
after washing their produce, likely contrary to their 
belief. In situations where produce are not tested, 
they likely have higher levels of pesticide residue when 
sold to consumers. These examples demonstrate the 
importance of safe produce handling; proper practices 
can reduce both intuitive and non-intuitive sources of 
contamination.

 Another non-intuitive source of contamination is 
from organic produce. Since organic farms are subject 
to strict regulations (Winter and Davis, 2006), many 
consumers buy organic produce under the assumption 
that they are safer and healthier (Hughner et al, 
2007). However the PDP found pesticide residue 
in 23% of 127 organically labeled produce samples 
(Winter and Davis, 2006). Organic farms are not 
allowed to use synthetic pesticides; however, there 
are exceptions where synthetic substances such as 
soap-based herbicides, water disinfectants such as 
calcium hypochlorite, and insecticides such as boric 
acid, elemental sulfur, and oils can be used (Winter 
and Davis, 2006). Like conventionally grown produce, 
organic produce is still susceptible to heavy metal 
and microorganismal contamination. Pesticide, heavy 
metal, and microorganismal contamination could be 
introduced through animal manure, which is permitted 
in organic agriculture (Coleman, 2012). This practice 
could lead to variation in contamination levels in 
organic produce, again highlighting the need for safe 
food handling practices.

Although safe food handling practices, such 
as proper food storage and washing can reduce 
these potential health risks, many consumers do not 
know about them or do not regularly practice them 
(Scott, Pope, and Thompson, 2009). Phang and 
Bruhn (2011) found that consumers typically do not 
wash their produce enough before consumption and 
commonly violate safe food handling during routine 
food preparation. This appears to be especially true 
for particular sub-populations. Li-Cohen and Bruhn 
(2002) found that subpopulations such as college or 
post-college graduates, men, higher-income households, 
and people under the age of 65 are more likely to 
practice unsafe food handling methods than non-college 
graduates, women, lower-income households, and 
people 65 years or older.

Given the higher education, it seems 
counterintuitive that college students practice unsafe 
food handling than non-college graduates; one might 
think that people who have a higher education would 
be more knowledgeable and practice safer food handling 
methods than those who do not. One study suggests this 
pattern: college students were confident in their food 
handling methods, but their knowledge and behaviors 
indicated that they were not practicing safe food 
handling methods (Stein, Dirks, and Quinlan, 2010).

There are a number of possible reasons why 
students would not practice safe food handling. One 
reason could be that students are not in the kitchen 
helping while food is being prepared at home. Another 
reason could be that students are not formally taught 
how to properly handle food because home economics 
classes have been reduced or eliminated from secondary 
schools (Beard, 1991). Health and nutrition classes 
in college focus more on sexual behavior, alcohol and 
substance abuse, and nutrition rather than on food 
safety practices (Morrone and Rathbun, 2003).

College students are the ideal subjects to assess 
their produce knowledge and practices as they are 
usually cooking for themselves for the first time and are 
also more likely to start working in the food industry 
serving food to the public (Stein et al, 2010). Jevšnik, 
Hlebec, and Raspor (2008) stated that educational 
programs should focus on the younger members of the 
population to spread food safety methods. As students 
are the next generation to have families, take care 
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of the elderly, and become mentors to the following 
generation, it is important for students to know and 
practice safe food handling skills. Given these reasons, 
college students and post-college graduate food 
handling practices are of particular interest.

Safe produce handling is an important national 
health issue, and is less often practiced by college 
students. To help address this problem, California State 
University, Fullerton students’ knowledge and behaviors 
of safe food handling were assessed. The data collected 
was used to answer the following questions:

How are CSUF students handling their produce?

What is their knowledge of produce contaminants 
based conventionally, organically, or urban garden 
grown produce?

1.

2.

This knowledge can help develop future food handling 
tutorials and intervention to improve produce handling 
behaviors.

Different target produce and the correct practices 
associated with each type were identified. Once 
the target produce was determined, a survey that 
addressed how CSUF students handle their produce 
and what their knowledge of produce contaminants 
based on where the produce was grown was designed. 
The survey was administered online campus-wide to 
college students at CSUF in Spring 2014.

Produce that would span the range of approaches to 
safe produce handling with regards to microorganisms, 
heavy metal, and pesticide contaminants were 
identified. The seven types of produce focused on in 
this study were apples, bananas, blueberries, broccoli 
head, whole cantaloupe, lettuce head, and potatoes as 
these produce characterize much of the range of fruit 
and vegetable types consumed regularly in the US. 
Apples are a typical fruit with a waxy coating and 
smooth surface that can harbor contaminants (Kilonzo-
Nthenge et al, 2006). Bananas and whole cantaloupe 

II. Methods

Determining Correct Practices for Target Produce

are fruits that most consumers do not consider washing 
or rinsing before consumption because the peel is not 
consumed (Li-Cohen and Bruhn, 2002). However, 
these fruits can be cross-contaminated from cutting or 
peeling the fruit, then making contact with the inside 
flesh (Verrill, 2012). Blueberries are an example of 
fragile or soft fruits that consumers might not consider 
washing or rinsing because they are too delicate or 
too time consuming to wash (Li-Cohen and Bruhn, 
2002). Broccoli is a vegetable type that has numerous 
nooks and crannies in which contaminants can linger 
(Kilonzo-Nthenge et al, 2006). Lettuce, like many 
leafy greens and vegetables, is commonly consumed 
raw (Doménech et al, 2013). Potatoes are a rough-
skinned vegetable type, with crevices that can harbor 
contaminants (Rowe, 2007).

The correct washing methods for the range of 
produce that were focused on in this study were 
then identified. Apples should be washed by running 
it under running water while rubbing it with ones 
hands (Zander and Bunning, 2010). Under the broad 
category of “Peaches, plums, and other soft fruits”, 
bananas should be washed under running water 
(Zander and Bunning, 2010). Rowe (2007) stated 
that bananas should be rinsed off. Since “washing” 
and “rinsing” are commonly used synonymously, it is 
difficult to decipher what the authors actually mean. 
For this study, the correct washing method for bananas 
was determined to be holding it under running water. 
Blueberries should be gently washed collectively under 
cool running water in a colander (Bolton et al, 2013; 
Driessen, 2013; Rowe, 2007; Zander and Bunning, 
2010). There are conflicting methods in the literature 
regarding the proper technique for washing heads of 
broccoli. Bolton et al (2013) stated that a broccoli 
head should be soaked in cold clean water, while 
Zander and Bunning (2010) said to soak it and then 
hold it under running water. However, Bruhn and Li-
Cohen (2004) says that soaking is not recommended 
as cross-contamination could occur. Based on the 
literature review and recommended methods from 
similar vegetable crops, the correct method for 
washing broccoli head was decided to be holding 
it under running water. This method increases the 
likelihood of dislodging soil particles, while reducing 
the risk of cross-contamination by inserting hands 
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Chi-square analyses were used to compare students’ 
washing behavior between organic and conventionally 
grown produce (R Development Core Team 2013). For 
the produce contaminants, the COUNTIF function was 
used to determine the types of contaminants that the 
students listed and then put into broader categories 
(Microsoft Excel 2007). General produce washing 
methods were calculated by percentages.

There was an overrepresentation of females (73%) and 
an underrepresentation of males (23%) in the survey 
compared to the CSUF population (Table 1). However; 
there was no difference between survey respondents and 
CSUF population regarding ethnicity, academic level, 
and college of the students (Table 1).

III. Results

Survey Development and Administration

Data Analysis

into standing water. Whole cantaloupe and potatoes 
should be washed by running the fruit or vegetable 
under running water and scrubbing it with a vegetable 
brush (Bolton et al, 2013; Bruhn and Li-Cohen, 2004; 
Driessen, 2013; Rowe, 2007; Zander and Bunning, 
2010). For lettuce heads, Zander and Bunning 
(2010) and Bolton et al (2013) recommend soaking 
in cool water and then rinsing, while Rowe (2007) 
recommends rinsing lettuce under running water. 
Because Bruhn and Cohen (2004) state that soaking 
is not recommended in general due to possible cross-
contamination, the correct method was determined to 
be to rinse under running water.

The majority of the survey questions were modeled 
after the Center for Food Safety and Applied Nutrition 
2006 and 2010 Food Safety Surveys, which gathered 
information on consumer knowledge, behaviors, 
perceptions, and attitudes on various food topics 
(Lando and Carlton, 2010). Additional questions were 
added to measure student knowledge about possible 
contaminants on conventionally, organically, and urban 
grown produce, and their behaviors regarding pre-
washed produce. A pilot test was administered to six 
CSUF undergraduate students for readability prior to 
distribution.

The online program Qualtrics was used to create 
the survey. The survey was IRB approval (application 
# HSR-14-0068; Assurance # FWA00015384) and 
distributed through a link on the California State 
University, Fullerton student portal messaging system 
and through flyers placed around the campus. Two 
Kindle e-readers were raffled as an incentive for 
participation. Over a four-week period, 177 responses 
were collected.

Figure 1. Student assessment of produce contaminants for 
conventional (n=114), organic (n=106), and urban garden grown 
(n=107) produce. Sample sizes denote the number of student responses 
for each free-response question. One response could have stated 
multiple contaminants for one or more categories. CHEM = pesticides, 
herbicides, fertilizers, pollutants. DIRT = dirt, bugs, insects. METAL 
= Heavy metals. MICRO = bacteria, parasites, E. coli, germs, mold, 
viruses, fungi. UNCAT = fecal matter, GMOs, toxins.

Table 1. Demographic data of survey respondents and CSUF population. 
The CSUF population is based on Fall 2013 data.

Gender
Female

Male

Prefer not to answer

Ethnicity
Caucasian

Asian

African American

Hispanic or Latino

Native American or Alaska Native

Native Hawaiian / Pacific Islander

Prefer not to answer

Other

Academic Level
Freshamn (0-30 units)

Sophmore (31-60 units)

Junior (61-90 units)

Senior (91>units)

Post-baccalaureate / Graduate

College
College of the Arts

Mihaylo College of Business and Economics

College of Communications

College of Engineering and Computer Sciences

College of Health and Human Development

College of Humanities and Social Sciences

College of Natural Sciences and Mathematics

n=142

73%

23%

5%

n=156

24%

23%

3%

37%

1%

3%

6%

3%

n=142

13%

14%

22%

35%

16%

n=131

3%

16%

9%

9%

31%

14%

18%

Respondents CSUF Population

55%

45%

-

25%

22%

2%

37%

0%

0%

4%

9%

13%

12%

25%

37%

14%

6%

22%

10%

9%

18%

20%

8%
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Students were asked to list the types of 
contaminants that they thought were associated with 
produce grown conventionally, organically, or in urban 
gardens. For conventionally grown and urban garden 
grown produce, the main sources of contamination that 
students reported were chemical and microorganismal 
contaminants (Figure 1). For organically grown 
produce, students reported microorganismal and dirt 
contaminants as the main sources of contamination 
(Figure 1). In all cases, students reported chemical and 
microorganismal contaminants, but rarely reported 
heavy metals as a source of contamination (Figure 1).

For the rest of the survey, conventionally and 
organically grown produce were focused on as they 
are commonly found in grocery stores and, which was 
assumed, would be the most accessible to students. In 
the survey, students reported that they purchase the 
majority (86%) of their produce from a grocery store 
(data not shown). To assess if there was a difference 
in washing behaviors, students were asked how 
frequently they washed different types of produce that 
were conventionally or organically grown. The “Most 
or All of the time” responses were focused on as it 
would give insight to differences among produce types 
and the gaps that students might have. There was 
no significant difference in student washing behaviors 

Figure 2. Proportion of students who reported washing fruits and 
vegetables MOST or ALL of the time prior to consumption. A high 
proportion of students reported washing apples (conv: n=146; org: 
n=145), blueberries (conv: n=145; org: n=145), broccoli (conv: n=146; 
org: n=145), lettuce (conv: n=145; org: n=145), and potatoes (conv: 
n=144; org: n=144) MOST or ALL of the time. A low proportion of 
students reported washing bananas (conv: n=146; org: n=145) and 
cantaloupe (conv: n=146; org: n=144) MOST or ALL of the time. 
Washing behavior does not differ between conventional and organic 
produce (p > 0.05 for all chi-square tests).

between conventional and organic produce for any of 
the produce types for most or all of the time responses 
(p > 0.05 for all tests) (Figure 2). For the majority of 
the different produce types, many students reported 
washing their produce most, or all of the time, prior 
to consumption; however, less than 50% of students 
reported washing bananas or cantaloupe (Figure 2).

When students did wash their produce, they 
varied in their practice of washing different produce 
types, and often used incorrect practices to wash their 
produce (Table 2). The majority of students (62%) 
wash their apples correctly by rubbing them with their 
hands under running water (Table 2). However, 58% 
of students do not wash their bananas at all, while 
only 13% hold them under running water (Table 2). 
For blueberries, only a third of students correctly 
wash them by either holding them under running 
water (Table 2). For broccoli head, 48% of students 
incorrectly wash them by rubbing them with their 
hands under running water, while only 32% hold them 
under running water (Table 2).

For whole cantaloupe, one third of students 
reported not washing them at all while another third 
of students incorrectly wash by rubbing them with their 
hands under running water; only 4% of students correctly 
wash cantaloupe by scrubbing. For lettuce head, 51% 
of students incorrectly wash by rubbing them with their 
hands under running water, while only 31% correctly 
wash by hold them under running water. For potatoes, 
48% of students incorrectly wash them by rubbing them 
with their hands under running water, while only 18% of 
students correctly wash them by scrubbing them with a 
vegetable brush under running water.

Table 2. General produce washing methods used by student respondents. 
Percentages can be greater than 100% because more than one method 
could have been selected. Shaded areas denote correct washing methods

Apples (n=178)

Bananas (n=11)

Blueberries (n=188)

Broccoli Head (n=183)

Cataloupe (n=166)

Lettuce Head (n=183)

Potatoes (n=188)

Fruit or Vegetable

*Modified. Survey stated: "Rub them under running water with a brush"
**Modified. Survey stated: "Rub them under running water with your hands"

3%

58%

1%

2%

34%

1%

3%

Do not 
wash

Use
cleaner

Soak in
container

Hold under 
running water

Scrub with
brush*

Rub with 
hands**

4%

1%

3%

3%

2%

3%

3%

3%

1%

16%

15%

3%

13%

10%

22%

13%

35%

32%

22%

31%

18%

5%

3%

2%

2%

4%

2%

18%

62%

25%

44%

48%

35%

51%
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Proper food handling can drastically decrease foodborne 
illnesses; poor food handling causes more cases of illness 
than do foods that are high risk for contamination 
(Hillers et al, 2003). However, safe produce handling 
practices are surprisingly rare, particularly in some 
subpopulations (Scott, Pope, and Thompson, 2009). 
In this study, California State University, Fullerton 
(CSUF) student self-reported knowledge and practice of 
food handling was documented. Since college students 
are one of the sub-populations that regularly practice 
unsafe food handling (Li-Cohen and Bruhn, 2002), this 
information may help guide future interventions to 
improve food safety.

Students mostly reported chemical and 
microorganismal types of contaminants, while heavy 
metals were rarely mentioned as a possible produce 
contaminant (Figure 1). This could be due to common 
knowledge of pesticides and produce recalls from the 
media, while heavy metals are more associated with 
non-consumable products such as paint and toys. 
However, it is important to think about heavy metals 
as possible produce contaminants as urban gardens are 
becoming more popular and are susceptible to heavy 
metal contamination due to surrounding buildings, 
construction, and car pollutants (Alloway, 2004). For 
example, zucchini and tomatoes that were grown in 
urban gardens nearby roads had higher heavy metal 
deposition and accumulation compared to those grown 
60 m away and suggested that these produce should be 
carefully washed before consumption (Antisari, 2015).

Students reported washing the majority of their 
produce items most or all of the time; however, the 
proportion of students was nearly halved with regard to 
produce with peels (bananas and whole cantaloupe). In 
anticipation of low frequencies of washing, a follow-up 
question was asked when students did not answer “most 
of the time” or “all or nearly all of the time” to any of 
the produce types. For bananas and whole cantaloupe, 
students commonly reported (71%) that they did not 
wash these fruits because they do not eat or serve 
them with the peel on. However, both produce types 
can cause serious illness through cross-contamination 
between the peel and the inside flesh when handling 
and thus need to be washed (Verrill, 2012). One specific 
example of the importance of produce washing was 
the Salmonella outbreak due to imported cantaloupe 

IV. Discussion

from Agropecuaria Montelibano in which 51 illnesses 
in 16 states and 9 illnesses in Canada in 2008 (Food 
and Drug Administration, 2008). Because consumers 
do not consume the rind of the cantaloupe, most do 
not think to wash them; however if consumers knew 
proper produce handling, then the number of cases and 
illnesses could have been reduced and possibly avoided.

Common organic buyer belief is that organic 
produce is healthier and cleaner than conventional 
produce (Winter and Davis, 2006), which could 
alter handling behavior to infrequently wash organic 
produce. According to Cicia et al (2002), regular 
organic food buyers are usually associated with 
alternative lifestyles such as vegetarianism, active 
environmentalism, and alternative medicine. As the 
majority of students (92%) were neither vegetarian 
nor vegan in this study, it makes sense that student 
behavior on washing conventional or organic produce 
did not differ in this study (Figure 2).

Although the majority of students frequently wash 
their produce, their approaches to washing different 
produce type are generally insufficient for reducing 
contamination risks, based on published guidelines. 
Students frequently use incorrect methods to wash 
produce; for instance, washing potatoes by running 
under water while rubbing them with their hands is 
a common, but incorrect, approach (Table 2). One 
possible factor contributing to poor practice is the 
confusing or conflicting information about best practices 
in the literature. For example, several produce items 
in this study had multiple correct conflicting washing 
methods due to conflicting literature. However, the most 
likely explanation for poor practice is the lack of food 
safety training in schools as health and nutrition classes 
primarily focus on nutrition, sexual behavior, alcohol 
and substance abuse (Morrone and Rathbun, 2003).

Although students reported high rates of produce 
washing, because this study is based on self-report 
data, it could be an overestimate of what students 
actually practice. Although the study population 
captured much of the range of ethnicities and majors 
at CSUF, women were overly represented in the 
data (Table 1). This may also tie in with another 
confounding factor that is that students who were more 
inclined to practice produce washing may have been 
more likely to take this survey which may not represent 
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the CSUF student population’s actual produce 
handling.

There is a clear need for more research and 
consensus on how to properly handle different types of 
produce and a standardized way for consumers to gain 
the knowledge to reduce the risk of foodborne illnesses. 
Given the importance of improving college student 
food handling practices, it is crucial to inform college 
students and consumers about safe food handling 
practices and improve instructional interventions to 
prevent Foodborne illnesses.
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Research Experience (U-ACRE), as well as Abraham 
Lab members, for providing support and guidance 
throughout this process.
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Reproductive Physiology of Pacific Sanddab (Citharichthys sordidus) 
Collected Near a Wastewater Outfall Site in Southern California

Velvet L. Park
Advisor: Dr. Kristy L. Forsgren

Abstract

Over a billion gallons of treated wastewater, also 
known as wastewater effluent, is discharged off 
the coast of southern California daily. Wastewater 
effluent may contain endocrine disrupting compounds 
(EDCs), chemicals that mimic naturally synthesized 
hormones in animals, which can affect the physiological 
processes in marine organisms. We hypothesized 
that the reproductive physiology of Pacific sanddab 
(Citharichthys sordidus) collected at an outfall site 
would be different compared to fish collected at a 
reference site not directly receiving wastewater effluent. 
Female Pacific sanddab were collected from a wastewater 
outfall site (n=97) and a reference site (n=110) in 
southern California (Orange County) during July 
and October 2014 and January and July 2015. Fish 
weight (g), standard length (cm), and ovarian weight 
(g) were recorded. Gonadosomatic index (GSI), that is 
gonad weight as a proportion of total body weight, was 
calculated (gonad weight/body weight x 100). Ovarian 
tissue was dissected, fixed, and embedded in paraffin 
wax for histological analysis. Using a light microscope, 
ovarian follicle stage (primary, secondary, or vitellogenic 
stages) was determined and ovarian follicle diameter 
measured (to the nearest μm). Ovarian follicle volume 
was calculated using diameter measurements (4/3π r3). 
Female sanddab standard length and weight were 
significantly greater (p<0.001 length; p<0.005 weight) at 
the outfall site during all months with the exception of 
January 2015. Pacific sanddab GSI was only significantly 
greater (p<0.001) in July 2014. The composition of 
ovarian follicles (i.e., developmental stages) in fish 
collected from the outfall or reference sites in July 
2014, was not significantly different (p=0.356 primary; 
p=0.155 secondary; p=0.432 vitellogenic). However, in 

October 2014, more primary ovarian follicles advanced 
to the secondary stage (p=0.050) and vitellogenic stage 
(p=0.020) compared to ovaries from fish collected at the 
reference site. In January 2015, more primary ovarian 
follicles advanced to the secondary (p=0.013) stage 
compared to the reference site (Figure 1). Vitellogenic 
follicles were not present in the ovarian tissue from fish 
at either site in January 2015. In July 2014, primary 
ovarian follicle volume did not differ significantly 
(p=0.468) between the outfall and reference sites. The 
volume of secondary and vitellogenic ovarian follicle 
stages were significantly greater (secondary p<0.001; 
vitellogenic p<0.001) at the outfall site than at the 
reference site. During October 2014, the ovarian follicle 
volume of all stages of ovarian follicles was significantly 
greater (p<0.001) at the outfall site compared to the 
reference site. In January 2015, the volume of primary 
and secondary ovarian follicles were significantly greater 
(primary p=0.020; secondary p<0.001) at the outfall 
site (Figure 2). Our data indicate the reproductive 
physiology of female Pacific sanddab displays 
considerable temporal and spatial variability. Currently, 
histological analyses for fish collected during July 2015 
is being conducted. Since sex steroid hormones are 
important during ovarian follicle growth, especially 
estrogens during secondary and vitellogenic ovarian 
follicle development, the presence of estrogen-mimicking 
EDCs in wastewater effluent are likely to have promoted 
the ovarian follicle development at the outfall site. 
Continued investigation of wastewater outfall sites will 
be important in order to conclusively establish a pattern 
of reproductive advancement in demersal organisms 
and/or determine the long-term effects of exposure to 
EDCs on reproductive physiology.

Department of Biological Science, California State University, Fullerton
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Figure 2. Ovarian follicle (volume mean ± SE) of Pacific sanddab ovaries collected at 
an outfall and reference site (n=5 fish per stage; n=15 oocytes per fish). Asterisks denote 
significant differences (p<0.02). Note: no vitellogenic follicles were observed in fish at either site 
in January 2015

Figure 1. Percentage of ovarian follicles at primary (P), secondary (S), and vitellogenic (V) 
stages of development (mean ± SE; n=5 sections per individual) of Pacific sanddab ovaries 
collected at an outfall site and a reference site in July of 2014, October 2014, and January 2015. 
Asterisks denote significant differences (p<0.001).
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Description of the Reproductive Morphology of a Viviparous Fish, the
Black Perch (Embiotoca jacksoni) using Histological Methods

Evelyn Ruelas
Advisor: Dr. Kristy L. Forsgren

Abstract

Introduction

Black perch are a common southern California reef 
fish. During mating, male black perch transfer a 
spermatophore (capsule containing mature sperm) to 
the female via an intromittent organ. Females store the 
mature sperm within the ovarian cavity until the ova 
become fertilized. Embryonic and larval development 
takes place within the ovarian cavity until the female 
gives live birth five months later. The objective of 
our study was to describe ovarian and testicular 
development of black perch in addition to describing 
the pathway of spermatophore transfer. Black perch 
were collected along the southern California coast 
throughout the year. Gonadal tissues were dissected, 
embedded in paraffin wax, and examined under a light 
microscope. The percent composition of ovarian follicles 
and spermatophore development were determined. 
Female black perch only had one fully developed 
ovary. All stages of ovarian follicles (primary 78.7%, 
secondary 7.1%, tertiary 12.4% and fertilized ova 1.8%) 
were observed in ovarian tissues from females 50 - 
100mm SL (n=5). In females 100 -150 mm SL (n = 4), 
in addition to all ovarian follicle stages being present 
(primary 69.2%, secondary 18.9%, tertiary 11.1%, 
fertilized ova 0.8%), one female had two developing 
young within the ovary. All stages of ovarian follicles 
(primary 4.0%, secondary 7.0%, tertiary 89%) were 
present in the ovarian tissue of females >150mm 
SL (n = 2); one female had eight developing young 
within the ovary. The intromittent organs of male 
fish 100 -150 mm SL (n =4) consisted of a white 
patch with no external protrusion. Spermatogonia 
(12.1%), spermatocytes (37.0%), spermatids (30.5%), 
and spermatozoa (20.3%) were present within the 
testicular tissue of fish 100 - 150 mm SL (n = 4). 

The intromittent organs were enlarged and protruded 
from the anal fin in males >150 mm SL (n = 2) and 
testicular tissue contained spermatocytes (31.3%), 
spermatids (28.3%), spermatozoa (34.3%) as well as 
spermatophore development (6.1%). By histologically 
describing the gonadal development of black perch and 
examining the pathway of spermatophore transfer, 
we will significantly contribute to our understanding 
of reproductive biology of the perch family 
(Embiotocidae) and viviparous fishes.

The black perch (Embiotoca jacksoni) are a common 
southern California reef fish (Isaacson and Isaacson 
1966, Behrens 1977, Baltz 1984). Black perch can be 
found in various habitats including: eelgrass, kelp beds, 
rocky and sandy bottoms, and bays and estuaries 
(Baltz 1984, Allen and Pondella 2006, and Froeschke et 
al. 2007). Black perch are distributed among varying 
depths, but are more commonly observed in deeper 
habitats where kelp beds are dense (~10m; Hixon, 1980, 
Ebeling and Laur 1985). Despite a ubiquitous population 
of black perch off the coast of southern California, the 
reproductive biology and gonadal development of black 
perch have not been thoroughly described including 
reproductive maturation (Isaacson and Isaacson 1966, 
Baltz 1984,). Additionally, conflicting literature on black 
perch make understanding this viviparous fish difficult.

Viviparity is a unique form of reproduction, most 
commonly associated with mammals, in which the 
fertilized egg is retained within the female body cavity 
during embryonic development (Dunbrack and Ramsay 

Department of Biological Science, California State University, Fullerton
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Materials and Methods

Specimen Collection

Histological Procedures

Gonadal Tissue Analysis

Black perch were collected in eel grass beds in Orange, 
Los Angeles, and San Diego Counties with at least two 
sites per location using a beach seine and hook and 
line methods. Fish were euthanized using an overdose 
of tricane methanesulfonate (MS-222) of purity at least 
98% (1 g: 5,000 ml seawater). Standard length (SL) to 
the nearest mm and weight (g) were recorded. Gonadal 
tissue was dissected from body cavity, weighed (g), 
then cut into cross or longitudinal sections. Ovarian 
sacs with developing young were dissected from the 
body cavity. Developing young were dissected out of the 
ovarian sac, weight and standard length were recorded. 
Developing young were cut into whole body cross 
sections. Additionally, all male reproductive structures 
were dissected including the intromittent organs on both 
sides of the anal fin. All tissues were fixed and prepared 
for histological processing (see below).

Dissected tissues were placed in Bouin’s fixative for 48 
hours then transferred to 70% ethanol until histological 
processing. Fixed gonadal tissue fragments were 
processed by dehydration in a series of graded ethanols, 
cleared with xylene, infiltrated and embedded in paraffin 
wax. Tissues were sectioned using a rotary microtome 
to a thickness of 5μm and stained with hematoxylin and 
eosin. Tissues were examined using a light microscope 
with a digital camera mounted to take photos. 
Micrographs were captured at several magnifications.

Gonadal tissue was staged based on morphological 
characteristics previously established for teleost fishes. 
Ovarian follicles were staged as: 1) primary ovarian 
follicles, 2) secondary ovarian follicles, 3) tertiary 
ovarian follicles, and 4) fertilized ova, (Turner 1938). 
Sperm development was staged as: 1) spermatogonia, 2) 
spermatocytes, 3) spermatids, 4) spermatozoa, and 5) 
spermatophores (Gardiner 1978).

Ovarian follicle diameter (mm) was measured using 
Image J software (NIH, version 1.48). Five tissue 
sections separated by at least 5μm were analyzed, 
measuring 10 follicles per stage (e.g., primary, 
secondary, and tertiary ovarian follicle stages, and 
fertilized ova). In an effort to avoid psuedoreplication 

1989). The number of developing young a female fish 
can gestate at one time is directly correlated to the size 
of the female; the larger the female, the more young 
she can energetically support (Isaacson and Isaacson 
1966, Turner 1938, Froescke et al. 2007). The smallest 
female black perch found to have developing young was 
121 mm standard length (SL; Isaacson and Isaacson 
1966, Froeschke et al 2007,). In some perch fishes 
(Family: Embiotocidae; e.g., shiner perch, dwarf perch), 
fish are sexually mature at birth (20-30 mm SL; Wiebe 
1968, Liu and Avise, 2011). Black perch have been 
reported as being sexually mature between one and 
two years of age (40-50 mm SL; Isaacson and Isaacson 
1966, Behrens 1977, Baltz 1984).

During the mating season, black perch mate 
by internal fertilization in which the male transfers 
sperm contained within a spermatophore via paired 
intromittent organs located on the anal fins (Blake 
1868, Tarp 1952, Bernardi 1999, LaBrecque, 2014,). 
While spermatophore transfer in black perch has not 
been documented, in shiner perch (Cymatogaster 
aggregata), the spermatophore remains intact in the 
efferent sperm ducts of the male until transferred into 
the female reproductive tract (Gardiner 1978). The 
spermatophore rapidly dissolves and mature sperm are 
no longer encapsulated (Gardiner 1978). The sperm 
head embeds into the ovarian wall in a viable state, 
until ovarian follicles are fertilized (Gardiner 1978).

Froeschke (et al. 2007) suggested that black perch 
mate between July and November. However, gravid 
females have not been reported until December, which 
has led researchers to believe that females retain sperm 
within the ovary for 5 - 6 months until ovarian follicles 
are mature and able to be fertilized (Turner 1938, 
Wiebe 1968, Shaw 1971, Gardiner 1978, Froeshcke et al. 
2007). Although much is known about the reproduction 
of shiner perch, little is known about the reproductive 
biology of black perch. The development of ovarian and 
testicular tissues has not been documented, and would 
provide insight into reproductive maturity, presence of 
spermatophores, and developing young. The objectives 
of our study were to document seasonal reproductive 
development of black perch gonadal tissues, and 
describe the male intromittent organ and its association 
with the testis to better understand transfer of the 
spermatophore to the female.
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of ovarian follicles measured, only those ovarian 
follicles in which the nucleus was at the center of the 
ovarian follicle were diameters measured. Fertilized 
ova were ellipsoid in shape, thus three measurements 
were taken: horizontally, vertically and diagonally. 
The diameter was calculated based on an average of 
these three measurements. The percent of each ovarian 
follicle stage was determined by dividing the number 
of each ovarian follicle stage by the total number of 
ovarian follicles and fertilized ova within the ovary and 
multiplied by 100. The percent of each sperm stage was 
determined by dividing the number of each sperm stage 
by the total number of sperm stages and spermatophore 
formations in the testes and multiplied by 100.

Female black perch were divided into three size classes: 
50 - 100 mm SL (n = 5), 101 - 150 mm SL (n = 4), 
and >151 mm SL (n = 2). The ovarian tissue dissected 
from females indicated that only one fully functional 
ovary was present (Fig. 1). A second structure, which 
did not contain ovarian follicles was always associated 
with the ovary (Fig. 1, 2). 

Results

Figure 1. Female black perch ovarian tissue from females (A) 50–100 
mm SL (B) 101–150 mm SL, and (C) >151 mm SL. Black arrow is 
pointing to ovary, and white arrow is pointing to secondary structure.

Figure 3. Black perch ovarian histology of females (A) 50-100 mm 
SL, (B) 101-150 mm SL, and (C) >151 mm SL. Numbers represent: 
1. Primary follicles, 2. Secondary follicles, 3. Tertiary follicles, and 4. 
Fertilized ova. (Scale bars equal 1 mm).

Figure 4. Percent composition of ovarian follicle stages in female 
black perch (A) 50-100 mm SL; n=5, (B) 100-150 mm SL; n=4, and 
(C) >151 mm SL; n=2.

Figure 2. Micrograph 
of ovary containing 
ovarian follicles 
(solid arrow pointing 
to ovary), and its 
association with the 
secondary structure 
(broken up arrow 
pointing to secondary 
structure) with no 
follicular development.

Ovarian follicle development differed between females 
in the three different size classes (Figure. 3). Primary 
78.7%, secondary 7.1%, tertiary 12.4% and fertilized 
ova 1.8%, were present in females 50-100 mm SL 
(n=5; Fig. 4). All ovarian follicle stages (n=4; primary 
69.2%, secondary 18.9%, tertiary 11.1% and fertilized 
ova 0.8%) were also present in females 101-150 mm 
SL (Fig. 4). Additionally, one female (110 mm SL) 
was observed to have two developing young within the 
ovarian sac, each with a standard length of 30 mm SL, 
weighing 0.5g. Ovarian follicle stages (n=2; secondary 
4%, tertiary 7%, and fertilized ova 89%) were present 
in females >151 mm SL (Fig. 4) primary ovarian 
follicles were not observed. 

One female (165 mm SL) was observed to have eight 
developing young within the ovarian sac (39.8 ± 0.46 
mm SL and 1.3 ± 0.02 g; Fig. 5). Developing young 
were dissected from ovarian sac. The young appeared 
to be developing in multiple sacs found within the 
single ovary (Fig. 5). Additionally, follicle diameter 
(mm) increased as the follicle matured from primary 
follicle stage to tertiary follicle stage in females
from all size classes (Fig. 6). 
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Figure 5. (A) Dissection of a gravid female black perch displaying 
ovary containing developing young, (B) Developing young dissected 
from ovarian sac, and (C) Dorsal view of the ovarian sac with visible 
pockets containing young. Figure 8. Right side of a male black perch >151 mm SL. Paired 

intromittent organ visible on anal fin (white box represents magnified 
image).

Figure 9. Percent composition of sperm stages in male black perch 
(A) 100-150 mm SL; n=4, (B) >150 mm SL; n=2.

Figure 6. Average follicle diameter of female black perch (A) >50-100 
mm SL; n=5, (B) 100 -150 mm SL; n=5 and (C) >150 mm SL; n=2. 
Error bars represent standard error of mean. 

Figure 7. Left side of male black perch <100 mm SL. Paired 
intromittent organs not fully developed on anal fin, but visible by a 
white patch (black box represents magnified image).

Figure 10. Reproductive structure of male black perch (A) Efferent 
ducts of testes appear to fuse to a single sperm duct that leads directly 
to paired intromittent organs, and (B) Histological micrograph of anal 
fin, arrow pointing to intromittent organ.

Fertilized ova from females 50-100 mm SL and 101-150 
mm SL appeared to be smaller than all other follicles 
found in the ovary. Fertilized ova in females >151 mm 
SL had the largest diameter.

Sperm stages (Spermatogonia 12.1%, 
spermatocytes 37%, spermatids 30.5% and spermatozoa 
20.3%, were present within the testicular tissue of fish 
100-150 mm SL (Fig. 9). Spermatophore formations 
were not present, and the intromittent organs on the 
anal fin consisted of a white patch with no external 
protrusion (Fig. 7). 

Testicular tissue from males > 151 mm SL contained 
spermatocytes 31.3%, spermatids 28.3%, spermatozoa 
34.3%, and the development of spermatophores 6.1% 
(Fig. 9). Spermatogonia were not observed, and the 
intromittent organs were enlarged and protruded from 
the anal fin (Fig. 8). 

Further observations on the testicular tissues of 
males 50-100 mm SL are currently being analyzed. 
Histological analyses on the relationship between the 
testis and intromittent organ confirm the presence 
of efferent ducts, which lead to a main sperm duct, 
possibly leading to the intromittent organs (Fig. 10).
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Discussion

The ovaries of all black perch had only one fully 
developed and functional ovary associated with a 
secondary structure. Our findings of a single ovary 
conflicts with previous published literature. It was 
believed that female black perch ovaries were fused 
(Behrens 1977). The secondary structure did not 
have developing ovarian follicles as evidenced by 
histological examination, thus ruling out the presence 
of a second ovary. The secondary structure may be 
associated with the process of internal fertilization, 
possibly receiving the spermatophore capsule from 
the male during copulation. The differences in the 
composition of ovarian follicles within the ovary, 
indicated that ovarian follicles are maturing during 
the year, which can aid in elucidating the timing of 
mature ovarian follicles and reproductive maturity of 
female black perch.

The percent of ovarian follicle stages aided 
in determining the reproductive status of females 
in different size classes. Females had the highest 
percentage of primary ovarian follicles 78.7%, followed 
by tertiary follicles 12.4%, secondary follicles 7.1%, 
and fertilized ova 0.8%, in females 50-100 mm SL (Fig. 
3). Females 101-150 mm SL also contained a high 
percentage of primary ovarian follicles 69.2%, followed 
by secondary follicles 18.9%, tertiary follicles 11.1%, 
and <1% of fertilized ova. Ovarian tissues from females 
>151 mm SL had the highest percentage 89%, of 
fertilized ova. Our results indicate that larger females 
have a higher reproductive success than do the smaller 
females. Larger females may have accessibility to more 
nutrient resources, thus being able to expend more 
energy in follicle development leading to a higher a 
percentage of fertilized ova. It was interesting, however, 
that fertilized ova were observed in females <100 mm 
SL, which are considered to be a young-of-the-year. 
Previous literature has stated that females do not 
become sexually mature until one to two years of age.

Ovarian follicle diameter increased as the ovarian 
follicle progressed through subsequent developmental 
stages, as is expected. As the ovarian follicle develops 
it accumulates yolk within the cell’s cytoplasm, and the 
upregulation of proteins cause the cell to increase in 
diameter (Forsgren and Young 2012, Bobe and Labbé 
2010). The largest diameters were found in fertilized 
ova in females >151 mm SL. Fertilized ova in females 

50-100 and 101-150 mm SL had smaller fertilized 
ova diameters compared to most other ovarian 
follicles present. The results may have been due to a 
histological artifact. Due to previous literature we were 
not expecting to find fertilized ova in young-of-the-
year females, thus we only sectioned far enough into 
the ovarian tissues to calculate diameters of all other 
ovarian follicle stages present.

Gravid females were observed in females 100-150 
and >151 mm SL. Interestingly, previous literature 
indicated that the smallest female to have developing 
young was 121 mm SL (Isaacson and Isaacson 1966, 
Froeschke et al 2007). Our study found that a female 
of 110 mm SL had two developing young within the 
ovarian sac. Gravid females had developing young 
within the ovary, thus not only is the black perch 
ovary the site of ovarian follicle development, but also 
the location of the five-month gestational period. The 
black perch ovary in the female 110 mm SL consisted 
of two longitudinal pockets where single young 
developed within each pocket. The ovary in the female 
>151 mm SL consisted of 4 longitudinal pockets 
where multiple young developed within each pocket. 
Dissected young from ovarian sac were all at the same 
stage of larval development.

Spermatogonia 12.1%, spermatocytes 
37%, spermatids 30.5% and spermatozoa 20.3% 
were present in males <100 mm SL (Fig. 9). 
Spermatophores were not present in any males <100 
mm SL. Males >151 mm had spermatocytes 31.3%, 
spermatids 28.3%, spermatozoa 34.3%, including the 
formation of spermatophores 6.1%. Spermatogonia 
were not present in the testes of males >150 mm 
SL. The sperm aggregations, otherwise known as 
spermatophores seemed to accumulate at the center 
of the cross section where the efferent duct was 
located. Spermatophores may be aggregating near the 
center to get into position to be released through the 
efferent ducts, to the single sperm duct and to the 
paired intromittent organs on the anal fin. Further 
investigation on the male reproductive structures will 
be conducted to locate spermatohpores and elucidate 
the pathway of the spermatophore from the male to 
the female during copulation.

Overall, spermatophore formations were not 
present in small males and the intromittent organs 
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were not fully developed on the anal fin. These data 
may indicate that young-of-the-year male black perch 
are not physically capable of copulating with a female. 
Interestingly, young- of-the-year females (<100 mm 
SL) were found to have fertilized ova within the 
ovary. Previous literature on black perch behavior 
have observed that males and females only mate with 
partners of equal size (Froeschke et al. 2007). Our 
results suggest that larger, mature, males >100 mm 
SL are mating with mature young-of the-year females 
<100 mm SL.

Future work will consist of analyzing the 
reproductive maturity of the developing young in 
the ovarian sac and juvenile black perch <50 mm 
SL. Observations of the intromittent organ are 
currently being conducted to determine the tissues 
that make up the organ and how the spermatophore 
is transferred to the female. We also aim to 
determine the fate of the transferred spermatophore 
once within the female reproductive tract. The 
development of ovarian and testicular tissues has not 
been documented, and would provide insight into 

Thank you to the Southern California Ecosystem 
Research Program (SCERP) for funding our research 
under the National Science Foundation (URM-DBI 
1041203) and the CSUF Biology Department. I would 
also like to thank Prarthana Shankar, Cristy Rice, 
Matt Scanlon, Stacy Schkoda, Velvet Park, Austin Xu, 
Jordan Abney, Joseph Gamez, Sean Zulueta, Javier 
Jacob and Harrison Huang.

reproductive maturity of the black perch and how 
they “fit” in with other perch species. It is important 
to understand that perch species in the same family 
(Embiotocidae) may differ in reproductive maturity, 
thus it cannot be assumed that all perch exhibit 
the same reproductive mechanisms. Histologically 
describing the gonadal development of black perch 
will significantly contribute to our understanding 
of reproductive biology of the perch family 
(Embiotocidae) and viviparous fishes.
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Assessment of the Reproductive Physiology of the California Mussel
(Mytilus californianus) in Southern California

Prarthana Shankar
Advisors: Dr. Jennifer L. Burnaford and Dr. Kristy L. Forsgren

Abstract

The California mussel (Mytilus californianus) is a 
common suspension feeding bivalve in the intertidal 
zone. California mussels have the potential to spawn 
continually throughout the year, and in California, 
recruitment is thought to peak in the summer. Our 
objective was to assess the degree of variability of 
certain reproductive traits in sites that are located 
close together in southern California. We hypothesized 
that because of the close proximity of three southern 
California sites, mussels will not show differences in 
reproduction across the sites. California mussels were 
haphazardly collected in April and July 2015 from three 
sites: San Pedro, Corona Jetty, and Dana Point Jetty. 
Soft body tissue was removed from the mussel shell 
and weighed (g). Gonad tissue (i.e., ovaries, testes) 
was dissected from the soft body tissue and weighed 
(g). The gonadosomatic index (GSI) was calculated to 
determine the gonad mass as a proportion of total soft 
body mass [(gonad mass/soft body tissue mass)*100]. 
Gonad tissues were fixed and embedded in paraffin 
wax for histological analysis. Using a light microscope, 
the sex of individuals was determined, and ovarian 
follicles and spermatocytes were developmentally staged. 
Ovarian follicle diameter was measured (μm) and used 
to calculate ovarian follicle volume (μm3). Female GSI at 
San Pedro was significantly lower in July than in April, 
while at Corona Jetty, GSI was significantly greater in 
July than in April (ANOVA on raw data: Site – F = 
1.684, DF = 2, p = 0.2032; Season – F = 3.970, DF = 

1, p = 0.0558; Site*Season – F = 10.28, DF = 2, p = 
0.0004). Most females during the two sampling seasons 
had ovarian tissue with only previtellogenic ovarian 
follicles. However, at Dana Point Jetty in July, 60% of 
females had evidence of a recent spawning event with 
the presence of ruptured follicular walls. Ovarian follicle 
volume at San Pedro was significantly smaller in April 
than in July (ANOVA on raw data: Site – F = 8.489, 
DF = 2, p = 0.0002; Season – F = 8.015, DF = 1, p = 
0.0047; Site*Season – F = 4.269, DF = 2, p = 0.0141). 
Male GSI at Corona Jetty was significantly greater in 
July than in April (ANOVA on raw data: Site – F = 
2.329, DF = 2, p = 0.1160; Season – F = 1.670, DF = 
1, p = 0.2068; Site*Season – F = 8.072, DF = 2, p = 
0.0017). In July, at all three sites, the majority of males 
were in the developing stage, indicating they were not 
sexually mature. Thus, California mussel reproduction 
in southern California appears to vary across the 
three sites and also between seasons. There may be 
many potential explanations for our results, including 
biotic factors and local environmental conditions like 
salinity, temperature and food abundance, all of which 
are thought to be exogenous cues for reproduction in 
the California mussel. Future work includes processing 
reproductive tissue of California mussels collected in 
November 2015 and February 2016, in order to gain 
a comprehensive understanding of the reproductive 
physiology of the California mussel along the coast of 
southern California.
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Comparing Seed Viability and Harvest Consistency Across Sites and Years 
for the Federally Endangered Plant Eriastrum densifolium ssp. sanctorum

Ignacio Vera
Advisor: Dr. Darren Sandquist

Abstract

Introduction

Endangered organisms are an important part 
of the world’s biodiversity and any and all action to 
protect endangered organisms should be taken. This 
includes organisms that are not in the general public’s 
eye and may be of little economic interest. Conservation 
of endangered organisms also does not have to be a 

The Santa Ana River woolly star, Eriastrum 
densifolium spp. sanctorum, is a federally- listed, 
endangered plant species native to the Santa Ana 
River floodplain in Redlands, CA. Woolly star has a 
specific habitat preference for young sand deposits that 
develop after periodic flooding. A major reason for its 
protection is the lack of such flooding from the Santa 
Ana River due to regional flood control measures. 
Suitable woolly star habitat is now significantly 
reduced and only supports small populations. A seed 
reserve of approximately 77,000 viable woolly star seeds 
was created as part of a larger restoration project. 
Seed collections involved formalizing a simplified 
method for harvesting, sorting, counting, testing 
viability, and storing the seeds. The methods were 
tested at three sites and across two years with slightly 
lower-than-normal precipitation (2012 and 2013). The 
objective was to achieve consistent and reproducible 
seed recovery across years and sites. Variation across 
sites was larger than expected, but recovery between 
years was consistent. These results indicate that the 
harvest method appears to be reliable for consistent 
seed recovery, but that seed production can differ 
significantly between sites.

financial burden and can serve as cultural value to a 
locality. Eriastrum densifolium ssp. sanctorum (family

Polemoniaceae), the Santa Ana River Wooly Star, 
or more commonly woolly star is a federally endangered 
plant located along the Santa Ana River floodplains of 
Redlands, CA. Like many endangered taxa, the woolly 
star is restricted to a small and unique habitat that is 
the Santa Ana River floodplain (Harper, K.T., 1979). 
Natural flooding of this floodplain would normally 
occur every few years and would eliminate competition, 
bring in new soil and nutrients, and replenish ground 
water. Unfortunately, due to flood control measures, 
these natural floods are less frequent and at a much 
smaller scale.

The woolly star is a perennial sub-shrub that grows 
to a maximum height of 1 m with blue-purplish flowers. 
Its common name, Santa Ana River Woolly Star, derives 
from its characteristics: being located near the Santa 
Ana River, having white woolly colored pubescent hairs 
on its stem, and flower having five petals in the shape 
of a star. It is fairly similar looking to other subspecies 
such as ssp. elongatum, but two characteristics identify 
the ssp. sanctorum from ssp. elongatum: geographic 
location and an elongated corolla tube or “flower depth” 
(Patterson, R. and Tanowitz, B.D., 1989). In a previous 
study, hybridization among various E. densifolium 
subspecies was successful, thereby challenging the need 
for more than simply two subspecies (Brunell, M.S. and 
Whitkus, R., 1998).

The primary pollinators of E. densifolium spp. 
sanctorum are hummingbirds, bumble bees, hallictid 
bees, and digger bees (Dorsett et. al, 2001). In the fall, 
the flowers fall off of the flower heads and seedpods 
develop. Individuals can have 2-100 flower heads, with 

Department of Biological Science, California State University, Fullerton
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each flower head containing 2-20 seedpods, and each 
seedpod containing about 5 seeds. Thus an individual 
plant can contain 10 to10,000 seeds.

This study is a part of a broader program to 
maintain a viable E. densifolium spp. sanctorum 
population for perpetuity. As part of this program, a 
seed reserve is required for restoring populations or 
establishing plants in a new location. Collecting this 
seed reserve is one of the main objectives of the study.

The goal was to collect 30,000 viable seeds in 2012 
and 2013. Viable seeds,which tend to be larger (1.5 to 
3.0 mm in length) and generally grow into healthier 
individuals, were specifically needed (Skogen et. Al, 
2010 and Seiwa, K. and Kikuzawa, K., 1996); seedlings 
that come from larger seeds are able to grow faster and 
produce more flowers than seedlings that come from 
smaller seeds (Stanton, 1984). In addition, I examined 
variation in seed yield and viability among different 
E. densifolium spp. sanctorum sub-populations to 
determine whether or not some sub-populations were 
producing healthier seeds than others. A final goal 
was to see if seed collections could be done in a cost 
effective manner.

Collection of woolly star seeds was done across 
field sites: A-D (Figure 1) in 2012 and A-C in 2013 in 
the Santa Ana River floodplain in Redlands, CA. Site 
D was not collected from in 2013 because the majority 

Materials and Methods

Figure 1: Field site locations: A-D in Redlands, CA. Boxes do not 
represent the entire range of the woolly star population of each site, only 
the area of the site that was used for seed collection. The Santa Ana 
River is dried up in this figure and the arrow depicts the natural flow 
when the river is present. The freeway in the middle of the figure is the 
Foothill Freeway (CA State Highway 210).

of the plants were dormant during the collecting 
period. These sites offer a good representation of 
woolly star populations as they offer various population 
sizes. Sites A and B are the larger sites, with several 
hundreds of individuals, Site D is a medium size 
population of a few hundred individuals, and site C 
is a smaller size population with less than a hundred 
individuals.

Because no previous methodology for collecting 
woolly star seeds had been published, one objective 
was to develop a standardized protocol for collecting, 
counting, and testing woolly star viability. The number 
of plants sampled was not recorded because the goal 
was to collect as much as possible.

Sampling occurred between late August and 
early November. During this period plants have open 
seedpods with seeds ready to be dispersed; only plants 
with at least half of their flower heads open were 
sampled. Plants were shaken firmly and falling seeds 
and debris were collected in large mixing bowls. The 
resulting mixture of seed and debris was designated 
as a “field sample”. “Field samples” were returned to 
the lab for sorting. Sorting was done with a two-sieve 
system: one size 14 soil sieve followed by a size 10 soil 
sieve. The size 14 sieve prevented debris larger than 
3 mm from passing through, but allowed woolly star 
seeds to pass. The size 10 sieve trapped large woolly 
star seeds, but allowed small non-viable ones, and other 
minute debris smaller than 1 mm to pass through. The 
isolated seeds and any debris retained in the size 10 
sieve were designated a “sieved sample”.

Physically counting 30,000 1.5 – 3-mm long seeds 
would take a large amount of time, so seed-to-mass 
regressions were used to give accurate estimates of how 
many seeds were actually collected. The regressions 
were based on small subsamples of “sieved samples” 
ranging in mass from 0.1 to 0.8 g. Actual counts of 
“potentially viable” seeds (i.e. seeds that were between 
1.5 – 3 mm in length and not visibly shriveled) 
were made for each subsample so that seed-to-mass 
regressions could be generated. Subsample masses and 
corresponding seed counts were plotted in Excel and a 
linear regression line, y = mx + b, fitted for each site 
in each year, where y is the potentially viable seeds of 
a sample, x is the sample mass, and m and b are the 
empirically determined slope and y- intercept.
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Viability tests of potentially viable seeds from 
each site in each year were conducted through 
germination experiments. Using small flowering pots 
filled with natural Santa Ana River floodplain gravel, 
100 “potentially viable” seeds from each site each 
year were germinated to give each site a “viability 
percentage”. Over a 36-hour period seeds were 
misted over in a misting chamber collecting 33 cm of 
water. The flowering pots were then placed inside a 
germination chamber where they were exposed to a 
night-day cycle of light (12h light: 12h dark) for 14 
days. This “viability percentage” was then used to 
adjust seed counts for each site and thereby estimate 
the total number of “viable seeds” collected from a site 
for a given year.

Site A consistently produced more “potentially viable” 
seeds each year than the other sites, followed by site B, 
and then site C (Figure 2). Site D had similar yield as 
site A, but was not collected from in 2013. The “percent 
viabilities” were very different across sites in 2012 (Table 
1), but did not vary much in 2013 (Table 2). In 2013, 
“percent viabilities” were also drastically lower than 
those of 2012. This drop in “percent viability” severely 
decreased the number of “viable seeds” despite collecting 
more “sieved sample” mass in 2013. In 2012, a total of 
34,972 “viable seeds” were collected and, in 2013, the 
total was 15,194 “viable seeds.”

Site A produced more “potentially viable” seeds 
than the other sites, but the reason why is not clear. 
It could be due to river proximity, as site A is the 
closest to the main drainage of the Santa Ana River, 
or it could be a result of greater soil nutrients. Site B 
is two kilometers East of Site A and still on the Santa 
Ana River drainage. Sites C and D are furthest from 
the drainage about a kilometer North of Site B. All of 
these sites may not be getting access to as much water 
as Site A. Sites C and D are also located next to an 
operational sand mine, but it is not clear if the mine is 
negatively impacting the woolly star environment.

Site C produced the least amount of “sieved 
sample” due to fewer plants in this population. It is 
also a fragmented population, with plants growing in 
small groups of 3- 8 plants and often several meters 
apart. There are also other plants and weeds in this 
site that likely compete with the woolly star for 
space and resources. This could be the reason for 

Results

Discussion

Figure 2: Seed-to-mass regressions of the “potentially viable” seeds to 
“sieved sample” mass collected from the four sites in 2012 (A). Seed-to-
mass regressions of the “potentially viable” seeds to “sieved sample” mass 
collected from the three sites in 2013 (B).

Table 1: 2012 “Sieved Sample” mass, “Potentially Viable” seeds based on 
regressions estimate, “Viability Percentage” from germination trials, and 
the resulting estimated number of “Viable Seeds” collected for each site.

Table 2: 2013 “Sieved Sample” mass, “Potentially Viable” seeds based on 
regressions estimate, “Viability Percentage” from germination trials, and 
the resulting estimated number of “Viable Seeds” collected for each site

"Sieved Sample"
Mass(g)

27.293

21.068

2.752

35.804

86.917

"Potentially
Viable"Seeds

22,421

8,939

785

25,161

57,306

"Viability
Percentage"

78

78

67

47

Site A

Site B

Site C

Site D

Total

"Viable Seeds"

17.617

5,006

523

11,826

34,972

"Sieved Sample"
Mass(g)

7.002

31.370

78.600

116.972

"Potentially
Viable"Seeds

5,442

16,240

40,352

69.440

"Viability
Percentage"

32

38

39

Site A

Site B

Site C

Total

"Viable Seeds"

1,741

6,171

7,281

15,194
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fragmentation of this sub-population, however further 
testing would be required to determine how well woolly 
star competes with invasive species in the area.

Rain also plays a role in the woolly star life-
cycle. The timing of rainfall is especially important for 
the emergence of seedlings, as seedlings have specific 
time frames in which they need rainwater to emerge. 
Woolly star specifically needs rain in late winter to 
early spring between January and March. If it rains 
outside the critical window, the rains are relatively 
useless for germination. Any global climate change that 
alters timing of rain events could negatively impact the 
woolly star natural emergence and hinder plant growth 
(Seiwa, K., 1999). If required temperatures, sunlight, 
and rainfall events do not occur simultaneously, seeds 
may remain dormant or worse, lose germination ability.

Restoration managers can use this methodology 
to recreate this project for various other plants of 
different seed sizes. It is low cost and would only need 
to adjust the type of sieves used to accommodate the 
plant of interest’s seed size. The whole process needs 
to be followed as one can not assume on an average 
year of rain fall to get “Viability Percentage” in the 
60-70% range and in years with below average rainfall 
“Viability Percentage” in the low 30%. If one was to 

use this methodology to go and collect 10,000 viable 
seeds of another plant; I would recommend doing a test 
run first going out in the field with collecting bowls or 
other apparatus to capture falling seeds. Then to take 
this “Field Sample” and sieve it through a two sieve 
system and measure the mass of the “Sieved Sample”. 
Next to count the number of “Potentially Viable 
Seeds” in the “Sieved Sample” and follow up with a 
germination test to measure the “Viability Percentage” 
using a portion of those “Potentially Viable Seeds”. 
Applying the “Viability Percentage” to the number of 
“Potentially Viable Seeds” gives us a more accurate 
“Viable Seeds” count and an idea of how much sampling 
of the desired plant needs to be done relative to the 
test run’s size. However if one is collecting from several 
sites that are a kilometer or more apart site, variation 
may occur as some sites may be producing healthier 
seeds than other sites. This is something to keep in 
mind when conducting a project such as this.

The overall cost and manpower needed for this 
type of conservation project was relatively minor. At 
a total of 70 man-hours plus $1,160 resulted in the 
collection of 50,000+ viable seeds. This is a small 
expense for the assurance of protecting populations of a 
federally endangered plant that faces extinction.
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The Effects of Elevated Soil Nitrogen Levels and Drought on Radish 
(Raphanus sativus) Leaf Characteristics and Palatability for Brown 
Garden Snails (Cornu aspersum)

Climate change and land use change have altered 
environmental conditions worldwide. For instance, the 
distribution of nitrogen across landscapes can become 
concentrated by leaching into soils where humans 
fertilize crops, raise livestock, dump waste, and process 
food (Follett, 1995). The over-nitrification of habitats 
can create problems such as eutrophication in aquatic 
habitats, water toxicity, alteration of plant assemblages, 
interferences in nutrient cycling, and raised levels of 
greenhouse gas emissions from soils (Fenn et al., 2003).

As global mean temperatures increase, drought 
will occur more frequently and in larger areas. 

Daniel Weiherer and Britney Brown
Advisor: Dr. Joel K. Abraham

Abstract

Introduction

Recent environmental changes in California, including 
elevated levels of nitrogen in soils and a higher 
frequency of drought, can increase the concentration 
of nitrogen in plant leaves. This can make plants 
more appealing as food sources to herbivores as well 
as weaken their herbivory defense mechanisms. In 
this experiment, radishes were grown under various 
conditions of nitrogen and water levels and their leaves 
were analyzed. Herbivory trials were conducted using 
brown garden snails. Elevated nitrogen levels decreased 
leaf trichome density and increased leaf mass, and 
area. Food-appeal also increased, leading to higher 
rates of herbivory in nitrogen- rich leaves. Drought 
was found to have no effect on leaf characteristics, but 
drought-stressed leaves were found to experience more 
herbivory. These findings indicate that anthropogenic 
nitrogen increases could have meaningful impacts on 
plant herbivory rates.

Scientists expect to see lower than normal levels of 
water in rivers, lakes, and soils as well as insufficient 
water availability for farming (Union of Concerned 
Scientists, 2011). Environmental changes such as 
these can have direct and indirect effects on plant 
assemblages. Directly, they can affect plants by altering 
resource availability. If levels of water drop, plants 
may suffer from desiccation and nutrient deficiency 
since wet soils are required to allow for the movement 
nutrients into roots. If levels of nitrogen increase, 
plants will absorb more nitrates into their tissues. 
Indirectly environmental changes can affect plants by 
influencing insect herbivore populations, which in turn 
influences plants.

In most cases, herbivory has negative impacts 
on a plant’s health and fitness. When a plant’s total 
leaf area is reduced, its photosynthetic capacity drops. 
Thus plants will produce lower amounts of energy 
after a period of herbivory, which can limit primary 
production. If the amount of energy is insufficient, 
plants may experience stress and an increased risk of 
death. For example, it has been found that increased 
insect abundance on a plot of land decreased coarse 
root production and subdominant plant species’ 
biomass (Blue et al., 2011). This demonstrates that 
the reduction in a plant’s mass is not only due to the 
loss of leaf mass consumed by herbivores, but that 
physiological effects in the plant that result from 
herbivory hinder plant growth.

Plants are sessile and cannot evade herbivores; 
thus in numerous cases, evolution has produced 
many types of defense mechanisms to guard against 
herbivory. Plants may defend themselves chemically 
with a wide range of carbon and nitrogen based 

Department of Biological Science, California State University, Fullerton
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compounds, such as alkaloids, cyanogenic glycosides, 
terpenoids, or tannins (Freeman and Beattie, 2008). 
Plants may also defend themselves mechanically using 
trichomes or thorns to prevent access to tissues or sting 
attackers; they may have thick leaves that are tough 
to chew, slippery leaves that are difficult to grasp, or 
they may produce sticky liquids which trap insects. 
These defense mechanisms are not mutually exclusive. 
For instance, radishes (Raphanus sativus) make use of 
cyanogenic glycosides and trichomes to defend against 
herbivores (Agrawal, 1998). Trichomes, a constitutive 
defense, are always present on radish leaves. However, 
cyanogenic glycosides are induced in radishes only 
during herbivory. When herbivory disrupts leaf tissue, 
the enzyme β- glucosidase comes into contact with 
and activates cyanogenic glycosides, which are toxic 
to most animals (Møller, 2010). These variables are 
not only contingent to plants; they also depend on 
environmental conditions.

Changes in environmental conditions may influence 
herbivory rates through changes in the quality or 
quantity of plant defenses. Nitrogen levels in leaves 
can both increase and decrease rates of herbivory. For 
example, plants with higher tissue nitrogen content 
become more favorable food sources to insects because 
they are more nutritious (Lemoine et al., 2014). When 
a population of insects feeds on leaves high in nitrogen, 
more insects are likely to survive and their abundance 
will increase, elevating rates of herbivory (White, 1984). 
Additionally, nitrogen can make leaves more appetizing 
to insects. Lemoine et al. (2013; 2014) found that when 
temperatures increased, some insect species preferred to 
eat leaves that were higher in nitrogen.
However, nitrogen is a key component in cyanogenic 
glycosides; in some instance, plants that grow in 
nitrogen-rich soil have greater amounts of cyanogenic 
glycosides in their tissue (Gleadow and Møller, 2014). 
This provides plants with a more potent defense 
against herbivory, making them less palatable for many 
organisms, including snails (Griffiths, 2013). Thus, in the 
case of elevated soil nitrogen levels, it is hard to predict 
whether leaf palatability would increase or decrease. 

Drought may also increase or decrease leaf 
palatability. Insufficient water availability stresses 
plants, which can cause more nitrogen to become 
available in their tissues (White, 1984). When a section 

of a plant is stressed, nitrogen is dissolved in that 
section to be transported away. With higher levels of 
accessible nitrogen, leaves may experience higher levels 
of herbivory due to the same reasons explained in 
the previous paragraph (White, 1984; Lemoine et al., 
2013; Lemoine et al., 2014). As drought limits plant 
growth, the concentration of cyanogenic glycosides can 
increase (Gleadow and Møller, 2014). This on the other 
hand would provide plants with a stronger chemical 
herbivory defense. Much like nitrogen, drought impacts 
on herbivory appear to be idiosyncratic.

Given the rate of change of environmental 
conditions due to human activities, the rate of 
herbivory may be altered in many plant communities. 
Consequently, it is important to know if plants will be 
able to adequately defend themselves against herbivory 
in the future. This study was designed to learn how 
elevated soil nitrogen levels and drought affect radish 
leaves and their palatability. It was hypothesized that 
nitrogen-rich plants have greater palatability because 
while even though increasing the concentration of 
nitrogen in their leaves should increase the concentration 
of cyanogenic glycosides, it also increases their food-
appeal to some herbivores and this could outweigh 
the elevated level of cyanogenic glycosides. It was 
hypothesized that drought-stressed plants have greater 
palatability because drought can hinder plants’ health 
which in turn may hinder plants’ ability to defend 
itself. It was hypothesized that the combination of 
nitrogen-rich and drought-stressed plants also has 
greater palatability since it was postulated that each 
treatment independently makes leaves more palatable. 
To test these hypotheses, radishes were grown under 
varying levels of nitrogen and water in a greenhouse. 
Leaf characteristics were measured to confirm that the 
nitrogen and water were transferred into the leaves 
at concentrations proportional to their treatments, to 
see how leaf characteristics correlated with growing 
conditions, and to compare the strength of herbivory 
defense mechanisms across treatments. Herbivory trials 
were conducted using brown garden snails (Cornu 
aspersum) to see how the growing conditions, strength 
of defense mechanisms, and nutrient content affected leaf 
palatability. Greater rates of herbivory were predicted in 
the experimental plants compared to the control plants 
since they were hypothesized to be more palatable.
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Methods

Radishes are part of the Brassicaceae family. Domestic 
radish, Raphanus sativus, may have originated in 
Asia or the Eastern Mediterranean and has since 
been distributed worldwide (Henslow, 1898). This 
annual plant grows rapidly and may be harvested in 
less than one month. R. sativus is commonly farmed 
for its swollen taproot; the roots are usually eaten 
raw in salads for their crisp, spicy flavor which is in 
part due to the plant’s cyanogenic glycoside content 
(IARC, 2004). The Radishes’ herbivory defenses are so 
potent that it can be grown alongside other crops to 
help deter pests such as ants, aphids, and hornworms 
from the area (Ready, 1982). Despite this and its fast 
growth, it can still suffer from pests such as Delia 
radicum, Phyllotreta striolata, and Contarinia nasturii 
(Seamen, 2013). The brown garden snail is part of the 
class Gastropoda and has been introduced into many 
parts of the world. These snails are originally from 
Europe but were introduced into California to be used 
for escargot in the 1850s. They prefer non-stressed 
habitats with sufficient moisture, and yet they have 
managed to become thriving herbivores in California 
(Dekle and Fasulo, 2001).

In February 2015, 120 radish seeds were sown in 
forty pots inside a greenhouse, with three individuals 
per pot. Each pot was 6 cm in diameter and 20 
cm deep with a well-draining bottom. The plants 
were watered with 300 mL of water on Mondays, 
Wednesdays, and Fridays. Each treatment had 
ten pots per group. Twelve days after sowing, the 
following adjustments were made to the pots: 1) 
seedlings were randomly thinned to a single individual 
per pot, 2) nitrogen-rich plants and the combined-
conditions plants were given 0.616 mL of blood meal 
(a nitrogen fertilizer), and 3) the drought-stressed 
plants and the combined-conditions plants were 
only watered once a week (300 mL) on Wednesdays. 
The pots were arranged evenly so that each row (of 
four pots) contained one plant from each group of 
conditions, but the arrangement of plants within the 
rows was random. The plants were rotated once per 
week. These procedures were taken to reduce the 
likelihood of spatial confounding factors.

Over forty snails were collected and housed 
in containers in the greenhouse during this time 
period. The containers had openings for ventilation 

and a layer of soil and peat moss was placed on the 
bottom. This layer of bedding was moistened and the 
snails were fed one entire head of Romaine lettuce 
on Mondays, Wednesdays, and Fridays. However, 
seven days prior to the start of the herbivory trials, 
the snails were starved to encourage herbivory. No 
additional water was ever supplied to the snails for 
drinking.

In April, once the plants had matured, one 
high quality leaf from each plant was removed in 
order to measure leaf characteristics. Leaf quality 
was determined as a compromise between size and 
greenness. The mass of each leaf was recorded. The 
greenness of each leaf was assigned a number by 
matching the color of the leaf to a color from a series 
of green paint swatches. The swatches had been given 
numbers ranking 1 to 5 from least to most green. 
Trichome density was measured under a microscope 
by counting the number of trichomes in the area of 
the field of view. Samples were taken at two locations 
on the upper surface of each leaf and the densities 
were averaged. The area of each leaf was measured 
using a computer program, ImageJ. The leaves were 
placed in a drying oven for three days, and then their 
dry mass was recorded.

It was necessary to confirm whether the various 
growing conditions had any impacts on the nitrogen 
and water concentrations in the leaves. Leaf greenness 
was used to compare the amount of nitrogen in the 
plant. Greener plants have more nitrogen in them 
because nitrogen is a component of chlorophyll (Hunt, 
2012). Therefore leaves with a higher greenness 
number were said to have greater concentrations of 
nitrogen. To calculate the concentration of water, the 
difference between wet mass and dry mass was divided 
by the area of the leaf.

Leaf palatability was said to be influenced by 
both the strength of herbivory defense mechanisms 
and the food-appeal due to the concentration of 
nitrogen. First, to compare the strength of defense 
mechanisms, trichome density and leaf toughness were 
ananlyzed. Leaf toughness was defined as leaf mass 
per area (LMA) which was calculated by dividing dry 
leaf mass by leaf area. To compare the food-appeal, 
leaf greenness was analyzed. Since the greenness of 
leaves is due to the concentration of nitrogen, the 
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Results

food-appeal of a leaf was defined as being directly 
related to its greenness. Finally, to compare leaf 
palatability in its entirety, herbivory trials were 
conducted. Leaves that experienced higher rates of 
herbivory were said to be more palatable to snails.

Herbivory trials were conducted at night because 
snails are nocturnal (Dekle and Fasulo, 2001). One 
high quality leaf was removed from each radish and its 
mass was recorded. A snail was also weighed and then 
stimulated by submerging in water for one second. 
The leaf and the snail were placed in a sealed plastic 
container. The snails were allowed ten minutes to 
find the leaf and begin eating. Once herbivory was 
initiated, it was allowed to continue for ten minutes, 
then the snail was removed and the leaf was weighed 
again. This was repeated for each radish plant and a 
new snail was used each time. The mass of leaf that 
each snail consumed was calculated and subtracted 
the average amount of mucus added to each leaf. 
To account for the possible bias of larger food 
consumption by larger snails, this measurement was 
standardized by dividing it by the mass of the snail. 
Then the value was multiplied by 6 to calculate the 
standardized rate of herbivory per gram of snail per 
hour.

The data from leaf characteristics and herbivory 
rates were analyzed by making comparisons between 
the four groups using average values and standard 
errors. When correlations were made between leaf 
characteristics and herbivory rates, linear trend lines 
were generated in Microsoft Excel to obtain R2 values. 
Statistical significance was tested using ANOVA.

To confirm if there was less water in the leaves of 
plants grown in drought-simulated growing conditions, 
the concentration of water in leaves throughout the four 
treatments were compared (Figure 3). Pots that had the 
lower water levels had lower average water concentrations 
in their leaves. The plants from the drought soil 
treatment had significantly lower concentrations of water 
than the control and the nitrogen-rich plants (p = 0.028), 
but the combination plants only had significantly lower 
water concentrations compared to the control plants.

Leaf mass and leaf area had the same responses to the 
soil treatments (Figures 1 and 2). Elevated nitrogen 
levels significantly increased leaf mass (p = 0.045) and 
area (p < 0.001). Although drought conditions lowered 
leaf mass and area, the differences were not significant.

generated in Microsoft Excel to obtain R2 values. Statistical significance was tested using 

ANOVA. 
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Figure 2. Average leaf area produced across various growing conditions. Error bars are standard 

error. 
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Figure 1. Average leaf mass produced across various growing conditions. 
Error bars are standard error.

Figure 2. Average leaf area produced across various growing conditions. 
Error bars are standard error.
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To confirm if there were higher concentrations 
of nitrogen in leaves from plants grown in soils with 
elevated nitrogen levels, the greenness of leaves 
throughout the four treatments were compared 
(Figure 4). Greener leaves were said to have higher 
concentrations of nitrogen. Greenness was also used to 
determine food appeal. The plants that were grown in 
the combination of soil treatments had leaves that were 
significantly greener than the control and drought leaves.

The strength of herbivory defense mechanisms 
was compared by analyzing trichome density and leaf 
toughness (Figure 5 and 6). Leaves from plants grown 
in nitrogen-rich soils had a significantly lower trichome 
density than leaves from plants that were not (p = 0.045).
 Leaves from plants grown in the combination of 
conditions only had a significantly lower trichome 
density than leaves from the control plants. No 
significant differences were found in leaf toughness.
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Figure 3. Average water concentration in leaves from the four growing conditions. Error bars are 
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Figure 4. Average leaf greenness determined by soil treatments. Error bars are standard error.  

 

The strength of herbivory defense mechanisms was compared by analyzing trichome 

density and leaf toughness (Figure 5 and 6). Leaves from plants grown in nitrogen-rich soils had 

a significantly lower trichome density than leaves from plants that were not (p = 0.045).  Leaves 

from plants grown in the combination of conditions only had a significantly lower trichome 

density than leaves from the control plants. No significant differences were found in leaf 

toughness. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Control Drought Nitrogen Comination

Av
er

ag
e 

Le
af

 G
re

en
ne

ss

Soil Treatment

 
13 

 

 

 

Figure 5. Average trichome density of leaves across soil treatments. Error bars are standard error. 
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Figure 6. Average toughness of leaves across soil treatments. Error bars are standard error.  
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Figure 5. Average trichome density of leaves across soil treatments. Error 
bars are standard error.

Figure 4. Average leaf greenness determined by soil treatments. Error 
bars are standard error.

Figure 6. Average toughness of leaves across soil treatments. Error bars 
are standard error.



69

Leaf palatability was compared by conducting 
herbivory trials (Figure 7). All plants from 
experimental groups had a greater number of leaves 
that experienced herbivory than the control treatment. 
The control experienced zero instances of herbivory, 
the drought plants experienced three, the nitrogen 
plants experienced four, and the combination plants 
experienced five. The rate of herbivory was significantly 
higher in leaves that grew in the nitrogen-rich and 
combined- conditions soils.

Greener leaves were found to experience higher 
rates of herbivory (Figure 8). A negative correlation 
(R2 = 0.7246) was found between trichome density and 
the rate of herbivory (Figure 9). No correlation was 
found between leaf toughness and the rate of herbivory 
because there were no significant differences in leaf 
toughness. Lastly, a summary statistics are given for all 
of our data in table 1.
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Figure 7. Average rate of herbivory per gram of snail per hour due to different growing 

conditions. The masses consumed were standardized for snail mass and the rate of herbivory was 

projected into units of hours instead of ten minutes. Error bars are standard error. 
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Figure 8. Average standardized rate of herbivory per gram of snail per hour at various leaf 

greennesses. R2 = 0.7841.
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Figure 7. Average rate of herbivory per gram of snail per hour due to 
different growing conditions. The masses consumed were standardized 
for snail mass and the rate of herbivory was projected into units of hours 
instead of ten minutes. Error bars are standard error.

Figure 8. Average standardized rate of herbivory per gram of snail per 
hour at various leaf greennesses. R2 = 0.7841.

Figure 9. Average standardized rate of herbivory per gram of snail per 
hour at various trichome densities. R2 = 0.7246
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Table 1. Summary statistics of all data. Averages (avg.), standard deviation (s.d), and standard 

error (s.e.) are stated for all measurements. 

  Control Leaves 
Drought-
stressed  
Leaves 

Nitrogen-rich 
Leaves 

Combined-
conditions 

Leaves 

Initial Leaf  
Mass (g) 

Avg. 0.581 0.478 0.855 0.786 
S.D. 0.293 0.193 0.264 0.123 
S.E. 0.093 0.061 0.088 0.039 

Greenness  
Index Measure 

Avg. 3.4 3.6 3.8 4.2 
S.D. 1.2 0.5 0.8 0.4 
S.E. 0.4 0.2 0.3 0.1 

Trichome 
Density (per 

cm2) 

Avg. 68.56 57.64 39.42 51.34 
S.D. 36.22 23.97 27.47 9.92 
S.E. 11.45 7.58 9.16 3.13 

Leaf Area (cm2) 
Avg. 15.07 13.95 22.40 22.28 
S.D. 7.82 5.32 9.07 4.05 
S.E. 2.47 1.68 3.02 1.28 

Dry Leaf Mass 
(g) 

Avg. 0.064 0.057 0.092 0.097 
S.D. 0.025 0.021 0.023 0.016 
S.E. 0.008 0.007 0.008 0.005 

Specific Leaf  
Area (cm2/g) 

Avg. 226 246 258 237 
S.D. 50.4 49.9 125 65.8 
S.E. 15.9 15.8 41.7 20.8 

Water Mass (g) 
Avg. 0.517 0.421 0.763 0.689 
S.D. 0.271 0.173 0.255 0.117 
S.E. 0.086 0.055 0.085 0.037 

Water  
Concentration 

(g/cm2) 

Avg. 0.0339 0.0300 0.0358 0.0313 
S.D. 0.0031 0.0029 0.0098 0.0046 
S.E. 0.0010 0.0009 0.0033 0.0015 

Toughness 
(g/cm2) 

Avg. 0.0046 0.0042 0.0047 0.0045 
S.D. 0.0009 0.0007 0.0021 0.0012 
S.E. 0.0003 0.0002 0.0007 0.0004 

Herbivory Rate 
[(leaf g)/ 

((snail g)(hour))] 

Avg. 0 0.0071 0.040 0.044 
S.D. - 0.0061 0.039 0.069 
S.E. - 0.0035 0.20 0.031 

  

Discussion

It was hypothesized that the drought, nitrogen, and 
combination groups would all be more palatable than 
the control group. The hypothesis was demonstrated 
to be correct as seen by higher rates of herbivory in 
all experimental groups. The plants that received less 
water had significantly lower concentrations of water 
in their leaves than control plants. This means that 
the treatments were effective and valid conclusions 
concerning drought could be drawn from the differences 
in leaf characteristics and rates of herbivory.

Plants that grew in higher levels of nitrogen 
had greener leaves than the control leaves, but the 
difference was only significant in the combined-
conditions plants. This means that the treatments may 
have been only partially successful; it is only know 

for certain that valid conclusions concerning increased 
nitrogen levels amidst drought, not nitrogen levels 
alone, can be drawn from our results. Chlorophyll is 
made from nitrogen (Hunt, 2012). Therefore since the 
combined-conditions plants’ leaves were greener, it can 
be inferred that they contained greater concentrations 
of nitrogen. Thus, these leaves should be more 
appealing food sources, which should increase rates of 
herbivory (Lemoine, 2013; Lemoine, 2014). However, 
since they contained more nitrogen, they could have 
also contained more cyanogenic glycosides, which 
should decrease the rate of herbivory. Yet a correlation 
in our herbivory results indicated that the more 
appetizing effect of added nitrogen outweighed the 
repelling effect of greater cyanogenic glycosides; it was 

Table 1. Summary statistics of all data. 
Averages (avg.), standard deviation (s.d), 
and standard error (s.e.) are stated for all 
measurements.
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found that greener leaves experienced higher rates of 
herbivory (R2 = 0.7841). One possible explanation for 
this is that our radishes may not have had the correct 
alleles to code for cyanogenic glycosides. According to 
Griffiths (2013), natural selection selects for cyanogenic 
glycosides in radishes when populations experience 
more herbivory. The seeds used could have come from 
populations that did not experience frequent herbivory, 
so they may not have had a strong cyanogenic glycoside 
herbivory defense mechanism. This would explain why 
adding nitrogen did not seem to have an effect on the 
strength of this particular defense mechanism.

Increasing the level of nitrogen in the soils 
increased leaf mass and area. This result can be 
expected because nitrogen is usually a limiting 
nutrient. It is in agreement with the work of Blue 
(2011) who showed that increasing nitrogen levels 
can increase primary production. In this study, leaves 
from plants that grew in conditions with elevated 
nitrogen levels also had a significantly lower trichome 
density than did plants in the control treatment. This 
is probably because leaves in nitrogen-rich plants 
had greater leaf areas. Based on this finding, it can 
be hypothesize that the number of trichomes does 
not scale with the area, but is fixed; so as leaf area 
increases, trichome density decreases. Having a lower 
trichome density should decrease the ability of a plant 
to defend against herbivores. This was evidenced by 
a correlation in the results from the herbivory trials: 
plants with lower trichome densities experienced 
higher rates of herbivory (R2 = 0.7246). One possible 
explanation for this is that when trichomes are less 
dense, snails get pricked less often and are not as 
discouraged to continue eating. However, it is also 
possible that if the leaves were also more appetizing 
due to increased nitrogen, the rates of herbivory could 
have been faster regardless of trichome density. For 
a definitive correlation, a test could be conducted in 
which trichomes were removed from leaves in one group 
of plants while the concentration of nitrogen was held 
constant between this group and a control group. In 
conclusion, it is evidenced that nitrogen-rich plants 
have weaker herbivory defense mechanisms and greater 
food appeal, thus their palatability should be greater.

Nitrogen-rich and drought-stressed leaves were 
expected to be more palatable and to have higher 

rates of herbivory. Our prediction was correct; both 
nitrogen-rich leaves and drought- stressed leaves had 
significantly higher rates of herbivory than the control 
which had a rate of herbivory of zero. This suggests 
that in the future, when drought and nitrogen is more 
prevalent, plants will face greater levels of herbivory. 
Furthermore, nitrogen-rich leaves had significantly 
higher rates of herbivory than the drought-stressed 
leaves. Therefore the most effective way to prevent 
herbivory levels from increasing may be to prevent 
natural plant assemblages from receiving too much 
nitrogen. The upper limit of nitrogen levels which is 
considered damaging for a plant may be considerably 
lower than the level where effects of over-nitrification 
are directly damaging. At high levels where plants still 
appear healthy they can be indirectly more prone to 
damage due to higher rates of herbivory.

The major difficulty in this experiment was 
compelling the snails to eat. Even though they were 
starved and experiments were performed at night, 
just over 30% of the snails ate leaves. This introduced 
greater possibility of error and produced a lower 
significance in the data. It is recommend that future 
experiments eliminate the possibility of no herbivory 
occurring by extending the time in which herbivory 
has the opportunity to occur. Instead of ten minutes 
with a leaf, a snail could be contained with an entire 
living plant for a whole night. Moreover, to address the 
issue of alleles not coding for cyanogenic glycosides, 
the experiment could be extended over generations 
of radishes. The plants could be grown on plots of 
land, each with a contained population of snails that 
was allowed to freely feed. Over time, the consistent 
pressure of herbivory should select for radishes with 
strong cyanogenic glycoside defenses and different 
results may be observed.

Another issue that arose was that all of our plants 
appeared to have been watered on one day when 
they weren’t supposed to be. This occurred between 
gathering the leaf data and the herbivory trials. 
Therefore, if this event was significant, there may 
have been a difference in the rate of herbivory of the 
drought-stressed and combined-conditions leaves.

It would be interesting to change the direction 
of this research. It is possible that plants may be able 
to handle the tradeoff of higher rates of herbivory for 
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more nitrogen; they may even grow better in higher 
nitrogen conditions, despite the herbivory. This is 
important to find out. However, there must be some 
level where the tradeoff is no longer beneficial. The level 
of nitrogen that acts as the threshold between benign 
and damaging rates of herbivory could be experimentally 
determined. Those results could be applied by 
environmental agencies to regulate the amount of 
nitrogen input into the environment by farmers and 
nitrogen oxide polluters. This could prevent herbivory 
not only in wild plant assemblages, but crops as well, 
perhaps reducing the need for pesticides.

Unfortunately, there seems to be potential for a 
severe snowball effect due to the warming of Earth’s 
climate and increased levels of nitrogen in its soils. 
These changes can affect herbivory in many ways other 
than leaf palatability. As the temperature increases, 
insects may expand their ranges, affecting more 
plant species in greater numbers (Backhaus, 2014). 
Higher temperatures can increase the metabolic rate 
of insects, also resulting in higher rates of herbivory 
(Lemoine, 2014). In addition, some insects that use 
plants as a water source will be required to consume 
more plant biomass only to obtain the same amount 
of water since the concentration of water was found 
to be lower in drought-stressed leaves. It was already 
mentioned that drought can stress plants and free up 
the available nitrogen in tissues, but high temperatures 
and herbivory, itself can stress plants as well. Once 
the nitrogen is readily available, it not only makes 

leaves more appetizing, but their increased nutritional 
content also increases the fitness of insect populations 
that feed on them. This increases the number of 
insects, increasing the rate of herbivory (White, 1984). 
Furthermore, herbivory adds nitrogen to the soil. As 
insect populations feed, they increase the rate of leaf 
deposition into the leaf litter, they add their excrement 
and carcasses into the leaf litter, and they speed up 
the decomposition rate of the leaf litter (Belovsky, 
2000). As a result, the plant populations may absorb 
higher concentrations of nitrogen. If environmental 
conditions continue to change as they have been, all of 
these results will be multiplied, and any single effect 
can act as a feedback loop for any of the other effects. 
Humans are constructing this dangerous system that 
may threaten countless plant species. Therefore it is 
important to prevent these changes before they cannot 
be undone.
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Structure-Function Studies of Deinococcus radiodurans ADP Glucose
Pyrophosphorylase: Role of Ser48 in Allosteric Regulation*

Ashley Le-Pham, Jeries Qoborsi, Leo Ong, Dr. Andrew Orry and Dr. Christopher R. Meyer

Abstract

Adenosine Diphosphate Glucose Pyrophosphorylase (ADPG PPase) is an allosterically regulated 
enzyme that functions as the rate-limiting step of starch synthesis in plants and glycogen 
synthesis in bacteria.  Because starch is a source of renewable and biodegradable carbon, ADPG 
PPase is an attractive target for protein engineering to increase biomass yield in crops.  The 
microbial versions of this enzyme are quite diverse in their regulatory and physical properties; 
some of these properties would be useful to incorporate into transgenic crops to enhance starch 
production. While a number of ADPG PPases have been kinetically characterized, there is 
only one published x-ray structure (PDB 3BRK) of an inhibited form. Very little is known 
about the enzyme from Deinococcus radiodurans (D. rad), an extremophile that is resistant to 
ionizing radiation and harsh growth conditions.  When comparing the amino acid sequence of 
this enzyme to other characterized ADPG PPases, it was noted that position 48 differed with a 
serine substituted for alanine in a region known to be important for allostery. To probe the role 
of Ser-48, the S48A enzyme was generated by site-directed mutagenesis and the recombinant 
altered D. rad ADPG PPases were successfully expressed in E. coli and purified via a scheme 
that includes anion exchange chromatography, size exclusion chromatography, and affinity 
chromatography.  Initial studies on the S48A enzyme in the absence of activators have shown 
a dramatic 20-fold increase in the apparent affinity for the substrate ATP, a 3-fold increase in 
apparent affinity for the cofactor magnesium, and a 4-fold increase in Vmax  compared to wild-
type.  Interestingly, in the presence of the activator fructose 1,6- bisphosphate (FBP) there was 
little change in the apparent binding affinity for substrates or Vmax compared to WT which 
displays a 14-fold increase in Vmax and 12-fold and 3-fold increase in apparent affinity for ATP 
and magnesium, respectively.  Similarly, in the presence of fructose-6-phosphate (F6P), there 
were not a very large increase in Vmax or higher apparent affinity for ATP for the S48A enzyme, 
but there was a 9-fold difference in Vmax and a 12-fold and 2-fold increase in apparent binding 
affinity for ATP and magnesium for WT, respectively.  The WT enzyme also displayed higher 
apparent affinity for FBP and F6P compared to the S48A enzyme.  The alanine substitution 
appears to result in an enzyme form that is partially activated but relatively insensitive to 
activators.  Further kinetic characterization of S48A in the presence of sulfate and the inhibitor 
phosphate is in progress.  With respect to physical characterization, two crystallization 
conditions for S48A, one including imidazole and the other with lithium sulfate and PEG, were 
found to yield preliminary results.  Further crystallization trials are in progress as a first step in 
elucidating the three-dimensional structure.  

*Supported in part by NSF and NSF BIO MCB grant #0448676

Department of Chemistry and Biochemistry, California State University, Fullerton
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Analysis Of The Predicted Strong Isomer Dependence Of Phenols When 
Reacted With Nitrogen Dioxide To Produce Nitrous Acid

The Earth’s ground is known to contain humic 
matter as the most abundant organic species.[1] 
This matter is created from the biodegradation of 
organic compounds by microorganisms within the 
soil to produce macromolecules, providing nutrients 

Salim Soubra
Advisor: Dr. Scott Arthur Hewitt

Abstract

Introduction

Humic acid is a complex mixture in soil, composed of 
long-chain hydrocarbons with carboxyl and phenolic 
groups. Simple phenolic compounds can be used as 
model compounds to study the reaction of nitrogen 
dioxide with humic acid. Computational work from 
Dr. Tao’s research group predicts that these reactions 
lead to the formation of HONO, a precursor of the 
very important atmospheric oxidizer, the OH radical. 
Nitrogen dioxide was reacted with phenol and isomers 
of methoxyphenol. Under consistent parameters and 
in a glass reaction cell, the following was performed in 
order to compare rate constants between the varying 
isomers. Samples from the reaction cell were removed 
using solid-phase micro extraction. The phenolic 
reactants and products were monitored by GC/MS 
analysis. The experimental results indicated that the 
rate of reaction with NO2 increased from phenol, 
to 2-methoxyphenol (ortho), to 3-methoxyphenol 
(meta), and then to 4-methoxyphenol (para). This 
contradicts Dr. Tao’s research group’s prediction, 
that the activation energies of the NO2 reactions with 
2-methoxyphenol and 4-methoxyphenol are much lower 
than those with phenol and 3-methoxyphenol. Their 
calculations assumed that it is a gas-phase reaction. 
Reasons for the discrepancies are discussed.

to plants. Humic acid consists of interconnected 
aromatic rings containing phenolic and carboxylic 
substituents, among other side chains that include 
carbon, hydrogen, nitrogen, and oxygen atoms. Humic 
matter is composed of highly complex macromolecules 
in soil, containing multiple fragments with various 
rings of different degree of substitution, resulting in 
its chemistry not being fully characterized.[2] Overall, 
the different types of individual humic substances 
found in nature contain a great amount of similarity 
with each other. They are derived from plant-based 
lignin and generally composed of phenolic moieties 
with hydrocarbon, hydroxyl, carboxyl, and amino side 
chains, as shown in Figure 1 below.[2]

In this research, our main focus is to study the 
production of the air pollutants in the troposphere, the 
lower atmosphere region. Many of the pollutants emitted 
from the atmosphere become reactive in the presence of 
the light, which then reacts with other gases in the air 

Figure 1: Generic humic acid structure including the major substituents.

Department of Chemistry and Biochemistry, California State University, Fullerton
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and produces harmful chemicals to the environment. For 
example, nitrogen dioxide undergoes photodissociation 
in the presence of light, producing NO and an oxygen 
atom,[3] which then reacts with the molecular oxygen in 
the air to produce tropospheric ozone. However, ozone 
can react with the NO to produce NO2 and O2, and this 
regeneration cycle continues to produce nitrogen dioxide 
and ozone in the atmosphere.[4]

Typically, the NO2 is not the only molecule that 
plays a big role in the creation of the air pollution, 
the volatile organic compounds (VOCs) released 
in the atmosphere are also a big source of the air 
pollution. NO2, VOCs, and sunlight all interact to form 
tropospheric ozone and other toxic species that not only 
affects human health, but damages crop productions.[5] 
NO is formed through emissions of internal combustion 
engines. Stemmler et al. (2006) reported that “soil and 
other surfaces containing humic acid exhibit an organic 
surface photochemistry, producing reductive surface 
species, which then reacts with nitrogen dioxide to 
produce nitrous acid (HONO)”.[3]

During the daytime, the sunlight photolysis of 
HONO produces hydroxyl (OH) radicals. These OH 
radicals play a big part in the daytime chemistry of both 
polluted and clean atmospheres. The HONO photolysis 
reaction is shown as follows:[14]

The removal processes of many species in the 
atmosphere are initiated by reactions with the hydroxyl 
radical, followed by the succeeding oxidation reactions. 
These oxidation processes are important for many 
atmospheric phenomena such as photochemical smog 
and particle formation. It all begins with the OH 
radical, which is the most important oxidizing species in 
the daytime atmosphere. The OH radical is considered 
to be the ‘detergent’ of the atmosphere, because it 
primarily participates in the removal of natural and 
manmade sources of pollutant compounds.[7]

Humic acid-like surfaces have been reacted with 

Then, through the HONO photolysis reaction 
(Equation 4), nitrous acid (HONO) could form 
OH radicals. Dr. Tao’s research group performed 
computational analyses on the reaction of nitrogen 
dioxide with varying substituted phenols to produce 
HONO. Dr. Tao’s group’s computational results are 
displayed in figure 2 (below).

NO2 + hν → NO + O 
O + O2 → O3 (ozone) 
NO + O3 → NO2 + O2

(1) 
(2) 
(3)

(4) HONO + hν → OH + NO

C6H5OH + .NO2 → C6H5O. + HONO

NO2.[8] Giving the assumption that the surface irradiates 
with substituted aromatic compounds, producing 
HONO. Possibly explaining the daytime source of 
HONO. Su et al. stated that in the soil nitrite can be 
formed by microorganisms and that it can then react 
with water to produce HONO, while not necessarily 
needing organic species.[9]

HONO is considered to be a key player for OH. 
Its photolysis is fastest in the early daylight hours.[10] 
During the daytime, HONO concentrations are lower 
since it is in the stationary state, meaning there is no 
net production as it is rapidly photolyzed right after 
it is formed. It is estimated that 20% of the integrated 
OH concentration is formed from photolysis of HONO 
immediately after sunrise when compared to other 
sources such as formaldehyde and VOCs.[11] However, it 
can also react to produce more ozone or other secondary 
pollutants, such as nitric acid and peroxyacyl nitrate. 
Since the discovery of HONO more than three decades 
ago, its sources have yet to be determined.[12]

The importance of understanding where HONO 
comes from is beneficial in terms of reducing air 
pollution, because the production of hydroxyl radical 
can lead to more nitrogen dioxide production and 
increase the ozone concentration in the troposphere. 
If the reactions of HONO are fully understood and all 
the major pathways that contribute to its nighttime 
and daytime concentrations are known, then it may be 
possible to diminish OH production in the early morning 
by at least 20%.

Dr. Tao’s research group assumed that HONO 
might be formed from the gas- phase reaction of 
NO2 with phenols, acting as the humic substance. 
The theoretical results of Dr. Tao’s group take into 
assumption that phenol reacts with nitrogen dioxide 
to form nitrous acid (HONO), shown in the equation 
below:[14]

(5) 
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The attention should be focused on the activation 
energies of phenol and the three methoxyphenol 
isomers (Figure 2) for the particular study. Phenol 
and meta- methoxyphenol have the highest activation 
energies, followed by ortho-methoxyphenol, then 
by para-methoxyphenol. Higher activation energies 
indicate that it takes more energy to pass over the 
threshold for the reaction to occur. Therefore, the 
larger the activation energy, the more time it will take 
to pass that threshold, resulting in a slower rate of 
reaction.

Dr. Hewitt’s previous lab group studied if NO2 
reacts with phenols or mesitylene. The results indicated 
that a reaction was observed for both compounds, 
separately reacting with NO2. In addition, the lab 
group attempted to research if HONO was produced 
from the reaction of NO2 with phenol. After Fourier 
Transform Infrared Spectrometer (FTIR) and 
Ultraviolet Visible Spectrometer (UV-VIS) analysis, no 
HONO peaks were observed in the assumed wavelength 
range. However, Dr. Hewitt’s previous lab group 
concluded that a reaction involving NO2 and phenol 
does occur.

For the following research, phenols with varying 
locations of methoxy groups were used as model soil 
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Figure 2: Dr. Tao’s predicted activation energies for various substituted phenols. 
Figure 2: Dr. Tao’s predicted activation energies for various substituted phenols.

Figures 3a-3d: 
The molecular structures of the 
phenolic compounds that will be 
reacted with NO2 in the study. 
a) phenol. 
b) 2-methoxyphenol (ortho), 
c) 3-methoxyphenol (meta), 
d) 4-methoxyphenol (para)

compounds (humic substance) to see how readily they 
react with nitrogen dioxide in a controlled atmosphere. 
The phenolic compounds used were: phenol, meta-
methoxyphenol, ortho-methoxyphenol, and para-
methoxyphenol. The structure of these compounds 
are displayed in figures 3a-3d. The research goal is to 
study the reaction of nitrogen dioxide with varying 
isomers of methoxyphenol to better understand the 
rates of reaction with humic acid. The rate of reaction 
is the rate at which the reactants are transformed into 
the products of the reaction. Since nitrogen dioxide 
and phenols react as soon as they are mixed together, 
the phenol reactant and products are analyzed after a 
5-minute reaction time. The percent reaction obtained 
was then compared to the computational activation 
energy results from Dr. Tao’s research group.
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Analysis will be performed using Gas 
Chromatography/Mass Spectrometry (GC/MS) 
techniques. Gas chromatography is one of the most 
popular techniques in industry. GC/MS analysis 
requires small samples with minimal preparation and is 
efficient at separating complex mixtures into individual 
components. It has low detection limits (minimum 
detection concentration), fast rate, high resolution, 
accuracy and reproducibility.[13] This technique is usually 
used for analyzing samples that have high volatility 
and a low molecular weight, such as phenolic groups, 
making GC/MS the preferred technique for the following 
research. The sample is inserted in the inlet where it 
is immediately vaporized, then pressurized by an inert 
carrier gas. The carrier gas – Helium – is continually 
flowing from a gas regulator through the injector and 
into the GC column. The flowing gas “carries” the 
vaporized sample in the column. The gaseous or liquid 
analyte is eluted through a column by a mobile phase 
over a stationary phase on the inside of the column. The 
mobile phase is the solvent passing through the column 
that is either a gas or liquid. The stationary phase is 
dependent on polarity in which it remains in place inside 
the column.

Different compounds elute at different retention 
times due to the varying interactions each compound 
undergoes with the stationary phase. The stronger the 
interaction between the sample and stationary phase, 
the longer it will take for the sample to flow through 
the column. The same is true for the reverse situation. 
Therefore, a non-polar column will take longer to elute 
a non-polar sample, due to the strong interactions with 
substances with same polarities. On the other hand, a 
polar sample will elute much faster out of the non-polar 
column, due to weaker or no interactions between polar 
and non- polar substances.

It is important that the column is heated enough 
to provide enough vapor pressure for analytes to be 
eluted. The process launches at a low temperature to 
determine the low boiling point mixtures and then 
increases to resolve the less volatile, high boiling point 
elements throughout the separation in a method known 
as temperature programming. The separated analytes 
move through a detector that is sustained at a higher 
temperature than the column to ensure that all analytes 
are gaseous.

Experiments were conducted in a 2.0 L reaction cell at 
25°C and 15 Torr. In a previous study, it was difficult 
to approximate how much phenol actually went into 
the reaction cell, since it was being pushed into the cell 
by Ultra-pure N2. Due to the fact that a couple of the 
methoxyphenols were light sensitive, the reaction cell was 
completely wrapped in black electrical tape and reactions 
were run in a dimly lit room. A consistent amount of 10 
mTorr for each isomer was put in the reaction cell during 
each separate experiment. All individual vapor pressures 
of phenol, ortho-, meta-, and para- methoxyphenol 
were measured. 10 mTorr was suggested as a reasonable 
pressure to use, since the phenolic compound with the 
lowest vapor pressure was 4-methoxyphenol at ~12 mTorr. 
While the vapor pressure for phenol was ~400 mTorr, 
2-methoxyphenol had a vapor pressure of ~500 mTorr, and 
3-methoxyphenol had a vapor pressure of ~30 mTorr.

Also, each experiment involved putting 28.5 Torr 
of the NO2/O2 gas mixture, from the attached bulb, 
into the reaction cell. The final pressure in the reaction 
cell was 14.8 Torr of the NO2/O2 gas mixture. The gas 
mixture in the bulb is Nitrogen Dioxide and Oxygen at 
a ratio of [1:79], respectively. Therefore, 14.8 Torr of the 
NO2/O2 gas mixture is equivalent to having 185 mTorr 
of NO2. All conditions and parameters were consistent 
and equal throughout the study. The final pressure of 
the NO2/O2 mixture in the reaction cell was 14.8 Torr, it 
was previously determined to be enough for the reaction 
to occur. However, if the pressure were to be brought 
up to sea level (760 Torr), it would take a good amount 
of time to reach that point. By that time the reaction 
between NO2 and the phenolic compound may have 
already begun, which may cause inaccurate results.

Experimental

Conditions

Nitrogen dioxide was reacted with varying phenolic 
compounds in a 2.0 L reaction cell. With the final 
pressure in the reaction cell being a consistent 14 Torr 
throughout the study. Samples were removed using a 
solid phase micro extraction (SPME) fiber, and then 
injected into the GC/MS for further analysis. The 
resulting chromatograms were reviewed to determine 
the percent products formed compared to the 
remaining percent of reactants. By knowing the percent 
of products formed for each isomer, one can determine 
the relative rates of reaction.
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Samples were removed from the reaction cell using a 
solid phase micro extraction (SPME) fiber (SUPELCO 
100 μm PDMS). A delay time of 5.0 minutes was 
given to each experiment, allowing the same amount 
of time for reaction to occur in the reaction cell for 
each individual experiment. The SPME fiber was 
inserted into the reaction cell through a septum, and 
allowed to adsorb the gases for 2.0 minutes. Then, the 
SPME fiber with the absorbed sample was injected 
into the gas chromatograph (Agilent Technologies 
6890N Network GC System) that was running the 
PRODUCT STUDIES (SOIL-2) method. The fiber was 
left in the GC inlet for 30 seconds, each time, to allow 
all adsorbed gases to be heated and released through 
the GC column. All samples were analyzed by the 
mass spectrometer (Agilent 5973 inert Mass Selective 
Detector) attached to the GC.

A glass vacuum line was set up with a reaction cell 
and U-tube line consisting of the varying phenolic 
compound that will be analyzed (phenol, 2-, 3-, or 
4- methoxyphenol). Both knobs at the ends of the 
U-line were closed off. The entire vacuum line was 

Sampling

Product Studies Method: (Soil-2)

Procedure

Chemicals and Glass Line
The reactants used in the air-soil experiments were: 
phenol (Sigma-Aldrich, 99%), 2-methoxyphenol (Sigma-
Aldrich, 99%), 3-methoxyphenol (Sigma-Aldrich, 99%), 
and 4-methoxyphenol (Sigma-Aldrich, 99%). The gas 
in the bulb was made by mixing 9 Torr of compressed 
Nitrogen Oxide (PRAXAIR, CAS: 10102-43-9) and 715 
Torr of excess compressed Oxygen (Oxygen Service 
Co., CAS: 7782-44-7). The resulting gas mixture in the 
bulb was Nitrogen Dioxide and Oxygen at a ratio of 
[1:79], respectively.

A glass vacuum line is used to prepare the 
nitrogen dioxide bulb and the reactions in the reaction 
cell. The phenolic compounds are kept in a U-tube 
completely wrapped in black electrical tape. The tape 
keeps light from getting to the phenolic compounds, 
since two of the methoxyphenols are known to be light 
sensitive. The placement of the U-tube is directly next 
to the reaction cell, giving the phenolic compounds 
a much shorter distance to travel until reaching the 
reaction cell. This is important since phenol and 
the methoxyphenols are fairly adhesive substances. 
Pressure is measured using a capacitance manometer 
(MKS Instruments Inc., Model 122BA), for pressures 
above 300 mTorr, and a thermocouple gauge (Duniway 
stockroom corp., DST-531), for making sure the 
vacuum pumps were working and that there were no 
leaks. The glass line was evacuated using a diffusion 
pump, and a duo-seal rough pump (Welch, model 1400).

Product studies (soil-2) GC/MS parameters include 
an overall time of 18.02 minutes, an inlet temperature 
of 260°C and detector temperature of 280°C. An 
Agilent DB-5 GC Column was used. With a length of 
60 meters and an inner diameter of 0.250 mm lined 
with a film 0.10 μm thick. Thin film columns are used 
to minimize the retention of high boiling and high 
molecular weight solutes. Also, thin film columns are 
less inert and have lower capacities. The film inside 
the column is known as the stationary phase. The 
DB-5 column is non-polar consisting of a film made of 
(5%-Phenyl)-methylpolysiloxane. Different compounds 
interact differently with the stationary phase. The 
stronger the interaction between the sample and 
stationary phase, the longer it will take for the sample 
to flow through the column. The same is true for the 
opposite. Therefore, a non-polar column will take 
longer to elute a non-polar sample, due to the strong 
interactions with substances with same polarities. On 
the other hand, a polar sample will elute much faster 
out of the non-polar column, due to weaker interactions 
between polar and non-polar substances.

The oven temperature is divided into three ramps: 
1, 2, and 3. The oven temperature initially reaches 
100°C and has a hold time and run time of 2 minutes 
each. Ramp 1 increases the oven temperature at a rate 

of 40 °C/min until it reaches 111 °C, remaining at this 
temperature for an additional 0.50 s. Overall, level 
one lasts about 2.78 minutes. The Ramp 2 increases 
the oven temperature at 2 °C/min until it reaches 130 
°C, immediately followed by Ramp 3. Overall, Ramp 
2 lasts for approximately 12.28 minutes. The Ramp 3 
increases the oven temperature at 40 °C/min until it 
reaches 200 °C, remaining at that temperature for an 
additional 4 minutes.
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pumped down. The glass line to vacuum was then 
closed off. The U-line was opened, bringing 10 mTorr 
of phenolic vapor from the U-tube to the reaction cell. 
The reaction cell containing ~10 mTorr of phenol vapor 
was closed. Again, the glass line was pumped down 
by vacuum. The glass line to vacuum was closed off. 
The NO2/O2 bulb was opened to the glass line, and 
then closed off when the pressure inside of the glass 
line reached 28 Torr. The total amount of NO2 can be 
calculated according to the ratio of the gas mixture, 
1(NO2) : 79(O2). The gas mixture at a pressure reading 
of 28 Torr is calculated to contain 350 mTorr of 
nitrogen dioxide. The glass line to vacuum was closed. 
Reaction cell to the glass line was opened to mix 
phenolic vapor and NO2, total pressure was 14 Torr. 
The reaction cell (~14 Torr) was closed off. Allowing a 
5-minute delay time for the reaction to proceed. Then 
a SPME fiber was injected into the reaction cell for 2 
minutes to absorb molecules. Finally, the SPME fiber 
was transferred from the reaction cell to be injected in 
the GC/MS for analysis.

In this research, the relative rates of reaction of nitrogen 
dioxide with varying phenolic compounds were studied 
using gas chromatography mass spectrometry (GC/MS) 
method. The result section shows the gas chromatograms 
for each different experiment/isomer collected during the 
research. The first section discusses the obtained results 
of phenol, ortho-, meta-, and para- methoxyphenol 
when reacted with nitrogen dioxide. The second section 
tabulates the results of the percent reactants and 
products that were present when each experiment was 
performed. The concluding results were then compared 
with the theory predicted by Dr. Tao’s research group. 
Experimental chromatograms are on the next page.

Figure 4 (below) show an example of a gas 
chromatogram of ion abundance vs. retention time for 
the nitrogen dioxide reaction with phenol. The peak 
of reactant, phenol, can be seen at 5.165 min. and the 
peaks of the products, 2-nitrophenol and 4-nitrophenol, 
can be seen around 7.213 min and 15.799 min.

Results

Gas Chromatograms

Figure 4. GC/MS chromatogram of ion 
abundance vs. retention time for nitrogen 
dioxide when reacted with phenol.
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Figure 5 (below) shows an example gas chromatogram 
of ion abundance vs. retention time for the nitrogen 
dioxide reaction with 2-methoxyphenol. The peak of 
reactant, 2-methoxyphenol, can be seen around 6.470 
min. and the peaks of the products, 3-hydroxy-4-
methoxynitrobenzene and 4-nitroquaiacol, can be seen 
around 13.747 min and 15.732 min.

Figure 5. GC/MS chromatogram of ion 
abundance vs. retention time for nitrogen 
dioxide when reacted with 2-methoxyphenol.
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Figure 6 (below) shows an e xample gas chromatogram 
of ion abundance vs. retention time for the nitrogen 
dioxide reaction with 3-methoxyphenol. The peak 
of reactant, 3-methoxyphenol, can be seen around 
8.919 min. and the peaks of the combined products, 
4-Nitroguaiacol, Hexamethyl benzene, and 4-methoxy-
2-nitrophenol, can be seen around 13.975 min., 14.222 
min., and 14.439 min.

Figure 6. GC/MS chromatogram of ion 
abundance vs. retention time for nitrogen 
dioxide when reacted with 3-methoxyphenol.



83

Figure 7 (below) shows an example gas chromatogram 
of ion abundance vs. retention time for the nitrogen 
dioxide reaction with 4-methoxyphenol. The peak of 
reactant, 4-methoxyphenol, can be seen around 7.694 
min. and the peaks of the products, 4-Nitroguaiacol 
and 4-methoxy-2-nitrophenol, can be seen around 
13.027 min and 14.715 min.

Soubra	 18	
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Figure 7. GC/MS chromatogram of ion abundance vs. retention time for nitrogen dioxide 

when reacted with 4-methoxyphenol. 

	

4-methoxyphenol 
Figure 7. GC/MS chromatogram of ion 
abundance vs. retention time for nitrogen 
dioxide when reacted with 4-methoxyphenol.
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In this research, the relative rates of reaction of 
nitrogen dioxide with varying phenolic compounds were 
studied using gas chromatography mass spectrometry 
(GC/MS) method. The result section shows the gas 
chromatograms for each different experiment/isomer 
collected during the research. The first section discusses 
the obtained results of phenol, ortho-, meta-, and para- 
methoxyphenol when reacted with nitrogen dioxide. 
The second section tabulates the results of the percent 
reactants and products that were present when each 
experiment was performed. The concluding results were 
then compared with the theory predicted by Dr. Tao’s 
research group. Experimental chromatograms are on the 
next page.

The chromatograms obtained were of samples taken 
under the same parameters and same reaction time 
interval. The reaction involving phenol and NO2 
produced 2-nitrophenol and 4-nitrophenol as products. 
The second reaction involving 2-methoxyphenol reacting 
with NO2 produced 3-hydroxy-4-methoxynitrobenzene 
and 4-nitroquaiacol as products. The third reaction 
involving 3-methoxyphenol reacting with NO2 produced 
4-nitroguaiacol, Hexamethyl benzene (may not be in 
the headspace for methoxyphenol), and 4-methoxy-2-
nitrophenol as products. The fourth reaction involving 
4-methoxyphenol reacting with NO2 produced 
4-nitroguaiacol and 4-methoxy-2-nitrophenol as products.

In the chromatogram, a large relative peak of 
products is directly related to a larger percentage of 
products present at the end of reaction Therefore, 
a larger relative peak area of products, means the 
larger percentage of products present after reaction, 
formulating the determination of a faster reaction. 
The amount of products present at the end of the first 
reaction with phenol was 30.9% (± 2.6). The amount of 
products present at the end of the second reaction with 
2-methoxyphenol was 34.3% (± 1.9). The amount of 
products present at the end of the third reaction with 
3-methoxyphenol was 67.2% (± 4.3). The amount of 
products present at the end of the fourth reaction with 
4-methoxyphenol was 92.2% (± 2.2).

The rate constant for each reaction was 
calculated, assuming that an elementary bimolecular 
reaction occurred, the rate constants were reported 
in (cm3/molecules). The larger the rate constant, the 
faster a reaction will occur. Finally, after analysis of 
the following data, it was determined that the reaction 
of NO2 with 4-methoxyphenol is about three times 
faster than that with phenol. The NO2 reaction with 
3-methoxyphenol is about twice as fast as that with 
phenol. The NO2 reaction with 2-methoxyphenol is only 
about 10% faster than that with phenol.

However, Dr. Tao’s research group provided 
results suggesting otherwise. Dr. Tao’s research group 
computationally determined the activation energies 
when NO2 reacts with the previously stated phenolic 
compounds. Their computational results agreed with 
the experimental results, such that, the fastest rate of 
reaction was that involving 4-methoxyphenol and NO2, 
and the slowest rate of reaction was that involving 

Data Tables

Discussion

Table 1: Shows the average percent of reactant and products present 
after the 5 minute reaction involving NO2 and the varying phenolic 
compounds.

Table 2: Lists the calculated amount of reactant lost and the rate 
constant for the reactions of the varying phenolic compounds with NO2.

Table 3: Dr. Tao’s predicted computational results vs. the 
experimental results obtained in this study.

= Rate = k · [Phenolic Reactant] · [Nitrogen Dioxide]
[Phenolic Isomer lost]

Calculations for Table 2 (above):

360 seconds

Phenol < 3-methoxyphenol << 2-methoxyphenol << 4-methoxyphenol

69.1 ± 2.6

1.00 x 1014

Phenol

Phenol

30.9 ± 2.6

7.59 x 10-20

65.7 ± 1.9

1.10 x 1014

2-methoxyphenol (ortho-)

2-methoxyphenol (ortho-)

Phenol < 2-methoxyphenol << 3-methoxyphenol << 4-methoxyphenol

34.3 ± 1.9

8.34 x 10-20

32.8 ± 4.3

2.17 x 1014

3-methoxyphenol (meta-)

3-methoxyphenol (meta-)

67.2 ± 4.3

16.42 x 10-20

7.8 ± 2.2

2.98 x 1014

4-methoxyphenol (para-)

4-methoxyphenol (para-)

92.2 ± 2.2

22.54 x 10-20

Compound reacting with Nitrogen Dioxide

Isomers

Isomers:

Experimental:

Reactant (%)

Reactant Lost
(molecule/cm3)

Product (%)

Rate Constant, k 
(cm3/molecule•s)
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Conclusion

phenol and NO2. However, their proposed predictions 
regarding 2-methoxyphenol and 3-methoxyphenol were 
not consistent with the experimental results. They 
predicted that the rate of reaction for 3-methoxyphenol 
is slower than that of 2-methoxyphenol, when 
reacted with NO2. While the experimental results 
indicate that 2-methoxyphenol is slower than that of 
3-methoxyphenol. Therefore, the only dissimilarity 
between the two groups’ results is between the 
2-methoxyphenol and 3-methoxyphenol.

As for the para- isomer (4-methoxyphenol), it 
has the fastest rate of reaction; this is similar to what 
Dr. Hewitt’s previous lab research has observed for the 
reactions of chlorine atoms with Halotoluenes. It could 
be that we cannot detect all product peaks, which might 
throw off our calculated percent products. Also, it could 
be that the adsorption/desorption efficiencies, with the 
SPME fiber, for the different reactants and products are 
not the same. This would throw off the calculated percent 
products. Since the computational calculations for Dr. 
Tao’s research group were performed under gas- phase 
reaction conditions. It may be assumed that instead of a 
gas-phase reaction occurring, it can be a heterogeneous 
reaction of water molecules occurring on the surface.

It is assumed that the reaction of phenolic 
compounds with nitrogen dioxide will form HONO. 
Then during the daytime, the sunlight photolysis of 
HONO produces hydroxyl (OH) radicals. These OH 
radicals play a big part in the daytime chemistry of both 
polluted and clean atmospheres. However, the lifetime 
of these phenolic compounds is fairly important. The 
lifetime is the time it takes a compound to drop to 1/e 
of its original concentration. This is important since the 
phenolic compound has to be present throughout the 
night reacting with NO2, forming HONO, which later 
photolysis during the daytime from the sunlight. The 
lifetimes of phenol and 2-methoxyphenol were calculated 
to be around 992 hours and 903 hours, respectively, 
using the rate constants from the experimental results. 
The lifetimes of 3-methoxyphenol and 4-methoxyphenol 
were around 458 hours and 334 hours, respectively. 
Hence, there shouldn’t be an issue with the phenolic 
compounds not being present during the nighttime, 
which is about 12 hours of no sunlight. Until the 
produced HONO undergoes photolysis early in the 
daytime, producing the OH radicals.

Humic acid is a complex mixture in soil, composed of 
long chain hydrocarbons with carboxyl and phenolic 
groups, was used as model compounds to study 
the reaction of nitrogen dioxide with humic acid. 
Computational work from Dr. Tao’s research group 
predicted that these reactions lead to the formation of 
HONO, a precursor of the very important atmospheric 
oxidizer, the OH radical. Nitrogen dioxide was reacted 
with methoxyphenol isomers and phenol, under 
consistent parameters, in a glass reaction cell, followed 
by GC/MS analysis. The study established which 
reaction with nitrogen dioxide occurred the fastest 
for varying phenolic compounds, under consistent 
parameters.

The experimental results indicated that the 
reaction with NO2 and 4-methoxyphenol is about 
three times faster than that with phenol. The NO2 
reaction with 3-methoxyphenol is about twice as 
fast as that with phenol. The NO2 reaction with 
2-methoxyphenol is only about 10% faster than that 
with phenol. This contradicts Dr. Tao’s research 
groups’ prediction, suggesting that the rate of the 
reaction with 3-methoxyphenol proceeds slower than 
2-methoxyphenol.

Lastly, comparing our results to Dr. Tao’s results 
assume that the pre-exponential factors are the same, 
however, this may not be the case. Their calculations 
were performed assuming that it was a gas-phase 
reaction. Nonetheless, it has been hypothesized that 
there may also be heterogeneous reactions of water 
molecules occurring on the surface. Future studies 
reacting NO2 with isotopically substituted phenols 
and analyzing with FTIR; will provide the necessary 
information to test the hypothesis.

Future Studies

The following research should also be performed using 
Fourier Transform Infrared Spectroscopy (FTIR). Since 
the use of FTIR would allow the direct detection of 
the production of HONO in the reaction with NO2. 
In addition, to ensure that the H in HONO comes 
from the hydrogen of the reactive specie, phenol. 
Rather than coming from the H2O molecules on the 
surface. The future experiment would determine if a 
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heterogenous reaction occurs, rather than the assumed 
gas phase reaction. be involved in analyzing isotopically 
substituted C6H5O-D, instead of the phenolic 
compounds. Since it can be used to distinguish between 
the gas-phase NO2 and C6H5O-D reaction (DONO 
product) and the heterogeneous NO2 and H2O reaction 
(HONO product) using FTIR.
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Palms and Queen Mountain Plutons in Joshua Tree National Park
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Abstract

Plutonic studies increasingly show that plutons spend a lot of their hypersolidus time as 
magma mush. Over time, they may build vertical magma mush pathways in arcs and interact 
at various degrees with other magmas. How extensive these magma mushes are, which magma 
processes dominate and if and how much interplutonic interaction between different plutons 
takes place at the emplacement level is not well understood.

A place where these questions can be investigated is in the northern part of Joshua 
Tree National Park, California, which contains outcrops of a Triassic arc magma plumbing 
system consistent of two contemporaneous plutons: the ca. 235 Ma Twentynine Palms pluton 
(TPP) and the Queen Mountain pluton (QMP). The TPP is a megacrystic quartz monzonite 
composed of 1-20 cm blocky K-feldspar phenocrysts in a medium grained, equigranular matrix 
of largely plagioclase, hornblende, and minor quartz, biotite and accessories. The size of the 
K-feldspar varies substantially between different pluton domains. The QMP is a medium 
grained granodiorite with plagioclase, K-feldspar, quartz, biotite, hornblende and accessories. In 
addition, both plutons contain small pendants and blocks (TPP) and smaller, cm-dm pieces and 
biotite clots (QMP) of Pinto gneiss, the host rock into which the magmas intruded. Together, 
the plutons form a roughly bull’s-eye shape map pattern with the megacrystic TPP forming 
the outer rim and the QMP, the interior of the complex. The contact between the two plutons 
is steep and sharp to gradational where exposed and dikes of the QMP intruded the TPP. The 
QMP contains sparse Alkali-feldspar phenocrysts up to 4 cm large, which resemble smaller 
phenocrysts in the TPP. Both plutons exhibit local solid-state deformation with the strongest 
fabric along the TPP margin.

Given these field relationships and concurrent crystallization of both plutons, we are 
investigating through petrography and element and isotope geochemistry the hypothesis that 
the two units may be related to one parent magma and are potentially representing a fractionate 
(QMP) and cumulate (TPP) pair. If our hypothesis is confirmed, this would suggest that we 
may be looking at a cross section of a horizontally and vertically extensive magma mush zone 
that underwent extensive open system differentiation and efficient crystal-melt separation.

Department of Geological Sciences, California State University, Fullerton
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Geochemical Analysis of Basalts from White Mountains and Horse Thief 
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Abstract

Introduction

Location

White Mountains and Horse Thief Hills are located to 
the in between Death Valley and Bishop, Ca. Horse 
Thief Hills is located to the south-east of Deep Springs 
Valley and to the north-west of the Last Chance 
Range. Miocene-Pliocene age (10.8 Ma) olivine basalts 
lie on the valley floor and atop the White/ Inyo 
Mountains to the west and the Deep Springs Range to 
the east. Previous geologic mapping shows the basalts 
in the White Mountains, Deep Springs Valley (DSV) 
and Horse Thief Hills (HTH) of the Last Chance Range 
(LCR) as the same geologic unit.

To determine if olivine basalts found in the White 
Mountains and HTH have the same source as the DSV 
basalts, samples were collected in the White Mountains 
and HTH. Samples were powdered and analyzed for 
major and minor trace element composition by X-Ray 
Fluorescence Spectrometer (XRF).

Trace element plots (e.g., Ba, Nb, Zr, Y, Ce, 
etc.) show that White Mountain and HTH basalts are 
similar to the DSV basalts and are likely from the same 
source. The White Mountain/DSV/HTH basalts are 
distinct and differ from LCR basalt. This geochemical 
correlation shows that basalt flowed from NW to SE in 
a paleochannel 10.8 M.a from the White Mountains to 
the HTH prior to formation of DSV.

Questions exist about the different possible dispersal 
pathways of various ancient species such as the pupfish. 
Early hypotheses suggested pupfish in the southwestern 
U.S. dispersed along the ancient rivers and lakes that 
existed during the Last Glacial Maximum (15-20 ka; 

The White Mountains are located 20 km (12 miles) 
east of Bishop, California in the rain shadow of the 
Sierra Nevada Mountains (Figure 1). The highest 
elevation is White Mountain at 4342m (14,246 feet) 
above sea level (asl). Deep Springs Valley is east of 
the White Mountains and 35 km (22 miles) east of 
Bishop. The HTH are an informally named northwest-
southeast trending upland 48 km (30 miles) east of 
Bishop. The HTH reach an elevation of 1783 m asl 
(5853 ft asl). East of the HTH is Fish Lake Valley 

Blackwelder, 1933). However, biological studies show 
that this is an insufficiently short time period and a 
possible Colorado River connection in the last 3 My is 
also infeasible (Smith et al., 2002; Brown and Rosen, 
1995). A 4 Ma time frame defined by the molecular 
clock (Smith et al., 2002) is more realistic geologically 
because tectonic activity would have had a larger 
impact on migratory pathways.

Based on unpublished major oxide data, Reheis 
and Sawyer (1997) hypothesized that basalt flows of 
the White Mountains flowed southeast across Deep 
Springs Valley (DSV) and onto the Horse Thief hills 
(HTH), possibly as far as Fish Lake Valley Death 
Valley. Case (2014) found that isolated outcrops of 
basalt across DSV are geochemically similar and from 
the same flow.

To further test the hypothesis of Reheis and 
Sawyer (1997), in this study, I collected samples of 
basalts found in the White Mountains west of DSV and 
in the HTH east of DSV to compare the geochemical 
composition of these baslts with the DSV basalts and 
determine if these flows have the same source.

Department of Geological Sciences, California State University, Fullerton
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Background

with an elevation of 1588 m asl (~5200 ft asl). 
Pliocene basalt flows are located at the top of the 
ridge and trend towards the southeast (McKee and 
Nelson, 1967). Pliocene basalt flows stop at the low 
lying basin of Fish Lake Valley. Flows are located 
on both the east and west sides of Fish Lake Valley 
separated by alluvial fan deposits.

Using potassium-argon dating, Dalrymple (1963) 
determined a whole-rock age of 10.8±1.0 Ma 
(Miocene) on an olivine basalt in the White 
Mountains. A rhyolite tuff underlying the basalt was 
dated at 10.9±0.2 Ma. He postulated that the basalt 
rested on an extensive erosion surface that predated 
formation of DSV.

Nelson (1966) mapped these same olivine basalts 
(Tb) in the northeast part of the Blanco Mountain 
Quadrangle of the White Mountain/Inyo Range 
(Figure 2). He speculated that the age was Pliocene. 
One prominent basalt outcrop is on Bucks Peak (3235 
m asl; 10,600 ft asl) 3.81 km (2.37 miles) southeast 
of the White Mountain Research Station Crooked 
Creek Laboratory. At Bucks Peak, Nelson (1966) 
mapped the basalt as non-conformably overlying the 
Precambrian Wyman Formation and Jurassic quartz 
monzonite of Beer Creek. Nelson (1966) also mapped 
olivine basalt on a saddle north of the North Fork of 
Crooked Creek 3.5 km (2.17 miles) due east of the 
White Mountain Research Station.

McKee and Nelson (1967) mapped locally 
scoriaceous olivine basalt flows (Tb) spanning 
northern DSV to Piper Mountain and across to the 
HTH. Across DSV the basalt flows are offset by a 
series of normal faults as they cross (McKee and 
Nelson, 1967). Basalt in the HTH are underlain 
by a medium to coarse-grained porphyritic quartz 
monzonite (Jm) and Tertiary tuff (Tt). Basalts in 
Fish Lake Valley to the east have similar stratigraphic 
relations (McKee and Nelson, 1967).

Krauskopf (1971) also mapped olivine basalts 
in several locations of the Mt. Barcroft Quadrangle, 
north and northwest of the Blanco Mountain and 
Soldier Pass Quadrangles, respectively. Krauskopf 
listed a 4.8 Ma K/Ar age for scoriaceous olivine 
basalts in Fish Lake Valley, northeast of the White 

Mountains. Krauskopf mapped rhyolite tuff underlying 
basalt north of Cottonwood creek. This is most likely 
the location of Dalrymple’s (1963) 10.8 Ma basalt and 
10.9 Ma rhyolite tuff (Case, 2014).

Ormerod et al (1988) proposed that the trace 
element composition of basalts in the western Basin 
and Range may identify two distinct mantle sources 
and the stage of eruption. The element Niobium (Nb) 
indicates ocean island basalts (OIB) whereas low Nb 
signifies continental flood basalts (Ormerod et al., 
1988). The low Nb concentration of western Basin and 
Range basalts requires substitution of Zr. Ormerod et 
al. (1988) found that Ba/Zr ratio separates different 
magmas. Lavas with Zr/Ba<0.20 reflect contributions 
from subducted oceanic material or lithospheric 
mantle, whereas lavas with Zr/Ba>0.20 resemble 
ocean island basalts (Ormerod et al, 1988).

Ba/Zr ratios also indicate the stage of eruption. 
Older, lithosphere-dominated magmatism resulted in 
Ba/Zr<0.20, compared with Ba/Zr>0.20 for younger, 
asthenosphere-dominated magmatism (Ormerod et 
al, 1988). In other words, major elemental basaltic 
components can represent locations of large-scale 
melting events.

Based on unpublished major oxide composition, 
Reheis and Sawyer (1997) proposed that basalts 
located in Deep Springs/Eureka Valley and White/
Inyo Mountains had the same source. Pluhar et al. 
(2005) used X-ray Fluorescence spectroscopy (XRF) 
to distinguish basalts from the Coso volcanic field 
166 km south of Bishop. Pluhar et al. (2005) used 
Harker diagrams and Sr/Zr and Rb/Nb plots to show 
distinctive compositional fields.

Manoukian (2012) analyzed basalts by XRF from 
the Last Chance Range southeast of the HTH. Case 
(2014) analyzed samples from the basalt outcrops 
across DSV using XRF as well. Case (2014) found that 
the basalts across DSV are the same flow and that 
these basalts have a different source from the Last

 Chance Range basalts of Manoukian (2012). 
There are currently no published geochemical analyses 
of the basalt in the White Mountains.
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Objectives

Methods

In this study, I will test the following hypotheses by 
completing XRF analysis on basalt samples in the White 
Mountain/Inyo Range and the HTH:

Two basalt samples were collected from Bucks Peak 
and north of the North Fork of Crooked Creek in the 
White Mountains. A third basalt sample was collected 
from the HTH.

Basalt samples were crushed and powdered at 
CSU Fullerton. Samples were taken to the Department 
of Geology at Pomona College, weighed into graphite 
crucibles along with a flux to promote melting. The 
graphite crucibles were melted in a furnace at 1000°C, 
powdered and melted again to form glass beads. The 
glass beads were polished and then analyzed using an 
X-ray Fluorescence spectrometer (XRF) to determine 
geochemical composition of major and minor trace 
elements.

The major oxides were plotted on a TAS 
diagram. Plots of trace elements included a chondrite- 
normalized spider diagram and a trace element ratio. 
These geochemical data was compared previous basalt 
data from the region.

If basalt samples found in the White Mountains 
and HTH are the same basalt found in DSV, then 
the basalts should have the same geochemical 
composition.

If White Mountains and HTH basalts are from a 
different magmatic source, then the basalt should 
have different geochemical composition.

If the White Mountains, DSV, Last Chance Range, 
and HTH basalt compositions indicate the same 
source, then the basalt flowed from the White 
Mountains to the HTH and Last Chance Range as 
hypothesized by Reheis and Sawyer, (1997).

If the White Mountains, DSV and HTH basalt 
compositions differ, then the basalt flows had one or 
more sources.

1.

2.

3.

4.

Figure 1: A location map of southwest U.S. B: Shaded relief of eastern 
California-western Nevada showing the paleo-Ownes River drainage 
system, prominent mountain ranges (after Blackwelder, 1933), including 
the Horse Thief hills, and Death Valley National Park boundaries 
(dashed line). Mono Lake (shaded) is the only remaining lake in the 
Owens Lake system with extent (vertical lines) of pluvial Owens Lake 
(OL), China/Searles Lake (SL), Lake Gale (LG or Panamint Lake) 
and Lake Manly (LM) also shown. Key valleys are Death Valley, Deep 
Springs Valley (DSV), Eureka Valley (EV), Fish Lake Valley (FLV), 
Owens Valley, Panamint Valley and Saline Valley (SV). C: Paleo-Owens 
River system in cross section showing basin and still elevations.

Figure 2: Portion of the geologic map of the Blanco Mountain 
Quadrangle (Nelson, 1966). Brown units are olivine basalts (Tb). Black 
star indicates sample location of JKK-082314-1. Blue star indicates 
sample location of JKK-082314-2.
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Figure 3: TAS Diagram (ww.neiu.edu/~kbartels/DrBartelsExcelSpreadsheetModel.xls)

Results

The Total Alkali Silica diagram (Figure 3) distinguishes 
volcanic rocks geochemically using silica and total alkali 
content. The JKK samples plot in the basalt field. A 
spider diagram plot shows that the JKK samples are 
nearly identical at a trace element level. On a Ce/Y 
vs Zr/Ba plot (after Ormerod et al., 1988), the JKK 
samples have a Zr/Ba ratio less than 0.2 (Figure 4).

 
Figure 3: TAS Diagram (ww.neiu.edu/~kbartels/DrBartelsExcelSpreadsheetModel.xls) 
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Figure 4: Ce/Y vs Zr/Ba. Ormerod et al. (1988) 
 
 

 
Figure 5: XRF analysis of sample numbers JKK-082314-1, JKK-082314-2, JKK-082414-1, and JKK-082414-1 
(DUP) normalized to chondrite. 
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Figure 4: Ce/Y vs Zr/Ba. Ormerod et al. (1988) 
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Figure 6: XRF analysis of samples JKK 082314-1, EV LCR-122111-1, and AJC DSV-032913-4 normalized 
with chondrite data.  
 
Discussion 
In this study, I wanted to explore the following hypotheses: 

1) If basalt samples found in the White Mountains and HTH are the same basalt found in DSV, 
then the basalts should have the same geochemical composition. 

The trace element composition of a DSV basalt (AJC-DSV-052913-4) with a sample from the 
White Mountains (JKK-082314-1) are indistinguishable. The greatest differences are Nb and Hf. 
Ormerod et al. (1988) previously noted that Nb concentrations in western Basin and Range 
basalts are too low for quantitative comparison. 
2) If White Mountains and HTH basalts are from a different magmatic source, then the basalt 

should have different geochemical composition. 
The Ce/Y and Zr/Ba ratios of the White Mountain (JKK 082314-1) basalt and the HTH basalt (JKK 
082414-1) are similar and are probably from the same flow. The Ce/Y ratio (Figure 4) for JKK 
082314-1 is higher than the other samples.  This is possibly due to the lack of weathering of this 
sample. The olivine at Bucks Peak was not oxidized whereas the olivine elsewhere was altered.  
Ratios Zr/Ba<0.2 are also consistent with Ormerod et al.’s hypothesis that these basalts have 
lithospheric contamination produced by the subducted Farallon plate.   
3) If the White Mountains, DSV, Last Chance Range, and HTH basalt compositions indicate the 

same source, then the basalt flowed from the White Mountains to the HTH and Last Chance 
Range as hypothesized by Reheis and Sawyer, (1997). 

The basalts from the White Mountains (JKK 082315-2), Last Chance Range (EV LCR-122111-1) 
and DSV (AJC-DSV-052913-4) are different (Figure 5). The Last Chance Range basalt is clearly 
different from the other two and must have a different source.  
4) If the White Mountains, DSV and HTH basalt compositions differ, then the basalt flows had 

one or more sources.  
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Figure 4: Ce/Y vs Zr/Ba. 
Ormerod et al. (1988)

Figure 5: XRF analysis of sample 
numbers JKK-082314-1, JKK-
082314-2, JKK-082414-1, and 
JKK-082414-1 (DUP) normalized 
to chondrite.

Figure 6: XRF analysis of 
samples JKK 082314-1, EV LCR-
122111-1, and AJC DSV-032913-4 
normalized with chondrite data.
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Discussion

Conclusions and Future Work

In this study, I wanted to explore the following hypotheses:

Geochemical data suggests that DSV basalts are 
different from LCR basalts. Geochemical markers 
indicate that White Mountains, Deep Springs Valley 
and Horse Thief Hills are all from the same source and 
may be the same flow. A topographic low (e.g. ancient 
river channels) would have allowed basalts to flow from 
White/Inyo Mountains to Horse Thief Hills. However, 
data shows that basalts differ in composition and 
age in Deep Springs, Eureka Valley, and Last Chance 
Region. As to whether the channel extended further to 
the east towards Death Valley or to the south remains 
unknown.

For future work, samples of additional basalts 
should be taken farther east. Along with additional 
sampling, Ar/Ar chronology should be done to see if 
samples are similar in age.

If basalt samples found in the White Mountains and 
HTH are the same basalt found in DSV,
then the basalts should have the same geochemical 
composition. The trace element composition of a 
DSV basalt (AJC-DSV-052913-4) with a sample 
from the White Mountains (JKK-082314-1) are 
indistinguishable. The greatest differences are Nb 
and Hf. Ormerod et al. (1988) previously noted 
that Nb concentrations in western Basin and Range 
basalts are too low for quantitative comparison.

If White Mountains and HTH basalts are from a 
different magmatic source, then the basalt
should have different geochemical composition.
The Ce/Y and Zr/Ba ratios of the White Mountain 
(JKK 082314-1) basalt and the HTH basalt (JKK 
082414-1) are similar and are probably from the 
same flow. The Ce/Y ratio (Figure 4) for JKK 
082314-1 is higher than the other samples. This is 
possibly due to the lack of weathering of this sample. 
The olivine at Bucks Peak was not oxidized whereas 
the olivine elsewhere was altered. Ratios Zr/Ba<0.2 
are also consistent with Ormerod et al.’s hypothesis 
that these basalts have lithospheric contamination 
produced by the subducted Farallon plate.

If the White Mountains, DSV, Last Chance Range, 
and HTH basalt compositions indicate the
same source, then the basalt flowed from the White 
Mountains to the HTH and Last Chance
Range as hypothesized by Reheis and Sawyer, 
(1997).The basalts from the White Mountains (JKK 
082315-2), Last Chance Range (EV LCR-122111-1) 
and DSV (AJC-DSV-052913-4) are different (Figure 
5). The Last Chance Range basalt is clearly different 
from the other two and must have a different source.

1.

2.

3.

4. If the White Mountains, DSV and HTH basalt 
compositions differ, then the basalt flows had one or 
more sources. The White Mountain (JKK 082314-
2), DSV (AJC samples) and HTH basalts (JKK 
082414-1) are similar and, therefore, have the same 
source (Figure 6). HTH sample (JKK 082414-1) 
lies at the same geomorphic position as AJC DSV 
032913-4 atop the HTH. HTH basalt units labeled, 
“QTb”, are southwest of DSV. HTH sample Zr/
Ba ratio x<0.2 indicates that it originated from a 
lithospherically dominated magma (Ormerod et. 
al, 1988). When compared between HTH and DSV, 
ratios of Zr/Ba and Ce/Y data are similar. This 
indicates they could have been the same flow. The 
CJJ Top (Figure 4) sample is also atop a range, in 
this case the Last Chance Range; however, CJJ Top 
is not consistent with the HTH samples indicating 
that these basalts have different sources.
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Trace Elemental Analysis of Productivity and Oxygenation Conditions 
within the Western Canada Sedimentary Basin following the 
Permian-Triassic Extinction

Anthony A. Macias 
Advisor: Dr. Adam Woods

Abstract

Approximately 251 million years ago, towards the end of the Permian, Earth experienced 
a mass extinction event that resulted in the extinction of almost 90% of species on the 
planet. Recovery from the extinction event did not happen at the same time everywhere; 
instead, recovery from the extinction was strongly related to environmental conditions. To 
understand how organisms rebounded following such a devastating crisis, it is necessary to 
examine the reestablishment of primary productivity and its relationship to environmental 
conditions, specifically oxygenation levels, during this period as a whole. Samples previously 
collected and powdered from the Montney Formation from 2 drill cores from the Pedigree-
Ring/ Border-Kahntah River area of northeastern British Columbia and northwestern Alberta 
(16-33-84/18W6M and B-24-H/94-H-16) underwent trace elemental analysis to determine 
oxygenation and productivity recovery rates within the region. Trace elemental analysis 
of core B-24-H/94-H-16 reveals low productivity levels and anoxic conditions that shift up 
section to euxinic conditions. Analysis of core 16-33-84/18W6M reveals anoxia and possible 
euxinic conditions that correlate with enhanced productivity, which likely drove the anoxic 
conditions found in the core. Anoxic to euxinic conditions found within the Pedigree-Ring/ 
Border-Kahntah River area therefore are driven by a combination of upwelling of nutrient 
-rich deep waters (16-33-84/18W6M) and the impingement of deep, anoxic water masses along 
the western margin of Pangea (B-24-H/94-H-16). Results derived from this study suggest 
that post-extinction recovery rates are strongly influenced by environmental conditions that 
are driven by processes acting at both the regional and global scale, and careful, multiproxy 
analysis is necessary to determine which processes are active in any given area.

Department of Geological Sciences, California State University, Fullerton
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Search for the Source of Cogstones in Southern California

Ryan McKay, Sierra Patterson and Crystal Cortez
Advisor: Dr. Valbone Memeti

Abstract

Cogged stones are 6000-3500 BC old Native American artifacts carved in a way that look like 
a cog gear. They have been only found in southern California and are dominantly made out of 
a variety of scoria basalt. The use and significance of these stones is unknown and no flawless 
theory has yet been agreed upon. The location of the basaltic source rock for the stones is also 
not known, however, multiple basalt locations crop out in southern California and it is possible 
the source rocks were derived from nearby. Thus finding the location of the source rocks may 
help narrow down the possibilities of what the stones were used for and reveal more about the 
lifestyle of Native Americans in Southern California.

We use petrography and geochemical analysis on four cogged stone fragments (CS1-
CS4) collected at different sites in Orange County. We are comparing these to scoria basalt 
collected on the SE side of Catalina Island near Two Harbors (CL1B), a site known to have 
been inhabited by Native Americans, the Santa Monica Mountains near La Vina Gomez de 
Malibu along Mulholland Highway (SAM), at Van Winkle Mountains (SW Mojave National 
Preserve; VW1) and at Fossil Falls along Hwy 395 (FF1). Three of the four cogged stones are 
vesicular basaltic scoria and one is volcaniclastic tuff. Petrographic analysis revealed the cogged 
stones are plagioclase rich with various amounts of olivine, pyroxene, oxides and iddingsite and 
varying grain size. Samples SAM and VW1 were eliminated as source rocks for these particular 
stones based on differences in petrography. The texture, grain size and mineralogy of samples 
CL1B and FF1, however, could be both possible matches for cogged stone CS3. XRF major 
oxide and trace element analysis shows similarities in chemistry between FF1 and CS3 with 
only minor differences in SiO2, CaO, Ba, Ni, Cu and Nb content. Samples CL1B and CS3 yield 
some overlap in major oxide and trace element concentrations, but enough variance to indicate 
a match is probably less likely. However, more geochemical analyses are underway to further test 
our working hypotheses. If the analyses yield positive match results with Fossil Falls (FF1) and 
Catalina Island (CL1B), then there is a possibility that Native Americans had a reason to travel 
far to collect cogged stone source rocks, however, other potential source rock comparisons have 
indicated possible nearby locations as well.

Department of Geological Sciences, California State University, Fullerton
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Locating The Volcanic Source Rock Of Prehistoric Cogged Stones From 
Southern California: Were They Carved From El Modena And Santa Rosa 
Basalts?

Sierra Patterson, Ryan McKay and Steven R. James
Advisor: Dr. Valbone Memeti

Abstract

Cog stones, hand-size Native American artifacts carved in the shape of cogs, have only been 
found in Orange County, CA and are dominantly made of basaltic scoria. The use of cog 
stones is unknown with ca. 40 different potential uses proposed to date. The purpose of this 
study is to identify the volcanic source location from which the cog stones were carved. This 
may help reveal the significance of the cog stones to 6000-3500 BC Native Americans.

To identify the source location of basaltic cog stones four cog stones fragments unearthed 
in Orange County were used for analysis. We focused on two potential source locations: the El 
Modena volcanics, which have been previously suggested as a likely source for the cog stones, 
and the nearby Santa Rosa volcanics in Riverside County. Petrographic observations and whole 
rock XRF geochemistry are used to compare the cog stones with the potential source samples. 
Given the variability in the composition of basaltic cog stones, it is unlikely that all cog stones 
are from the same volcanic source.

Preliminary results from petrographic analysis of thin sections of the cog stones show 
that they have porphyritic texture and are composed of mainly plagioclase laths with varying 
amounts of ortho- and clinopyroxene, olivine, opaque minerals, and iddingsite. Petrographic 
analysis of Santa Rosa basalt has the same mineralogical composition and texture as cog stone 
CS3. We are further testing this potential match through XRF analysis. Mineralogy and texture 
of the El Modena basalts do not resemble that of any of the cog stones analyzed, however 
XRF analyses of two El Modena samples suggest similar geochemical compositions to CS2. 
They contain ca. 55 wt.% SiO2, 20-21 wt.% of Al2O3, 5-6.5 wt.% Fe2O3, 8-9 wt.% of CaO, and 
similar trace element concentrations, e.g. 200-230 ppm Zr, 320-400 ppm Ba, 16-20 ppm Nb, and 
600- 700 ppm Sr. El Modena basalt has smaller plagioclase exhibiting a sieve structure, lower 
vesicle and matrix abundance, and does not contain clinopyroxene and olivine. More analyses 
are underway to further examine these relationships. If we can confirm that both El Modena 
and Santa Rosa volcanics were sourced to carve cogged stones, it would suggest that Native 
Americans collected these rocks perhaps because they were soft to carve and found nearby; the 
collection site may have not been important.

Department of Geological Sciences, California State University, Fullerton
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Evaluation of the Big Pine Volcanic Field Contact Relationships along the 
Sierra Nevada Frontal Fault Zone north of Goodale Creek in Owens Valley, 
California

Amanda Shellhorn
Advisor: Dr. Phillip A. Armstrong

Abstract

This study investigates the contact relationships between basalt flows and cones of the 
Quaternary Big Pine Volcanic field (BPV) and the predominantly granitic rocks of the eastern 
Sierra Nevada Mountains between Goodale and Taboose Creeks along the Sierra Nevada Frontal 
Fault Zone (SNFFZ). The SNFFZ marks the western boundary of the Basin and Range Province 
and separates the Sierra Nevada Mountains from Owens Valley. This zone is composed mostly 
of NNW-striking, east-dipping normal faults, which generally are assumed to dip 60°. However, 
previous work north of Bishop and farther south near Lone Pine and Independence has shown 
that the SNFFZ faults dip much shallower (26 to 52°). The BPV contact with the Sierra Nevada 
Mountains generally trends NNW and is parallel to the mountain front. The contact locally V’s 
up and over ridges at the range front and along the SNFFZ and is consistent with an overall 
east dip. Our working hypotheses are that the contact formed by (1) basaltic flow deposition 
buttressed against the mountain front; (2) localized basalt emplacement and extrusion along the 
SNFFZ; and (3) faulting after emplacement of the basaltic rocks. Field and GPS mapping along 
the contact combined with Google Earth map analysis are being used to test the hypotheses. 
Field mapping and preliminary 3-point analysis along the contact yields an average dip of 24° 
E. This dip is similar to the dip of SNFFZ faults farther north and south suggesting that the 
contact may locally be a fault. Plane-fitting analysis of GPS- and Google Earth-derived x,y,z 
positions will be utilized for a more precise orientation of the contact and to assess its potential 
as a fault. A shallow SNFFZ dip affects long-term extension rate calculations and the kinematic 
history of this part of the western Basin and Range and Eastern California Shear Zone.

Department of Geological Sciences, California State University, Fullerton
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Reconstructing Hydrologic Change Over the past 96,000 Years Using 
Sediments from Baldwin Lake, San Bernardino County, California
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1. Introduction

Department of Geological Sciences, California State University, Fullerton

Records of the last glacial in coastal Southern 
California (CSC) are incredibly sparse (Blazevic 
et al., 2009; Kirby et al., 2010). In fact, terrestrial 
climate records spanning the entirety of the last 
96,000 years in southern California are presently 
non-existent. In this study, we present a new 
paleohydrologic record derived from a sediment core 
obtained from Baldwin Lake in summer 2012, which 
extends our knowledge of water variability in CSC 
back into the last Interglacial (MIS 5c; Table 1). 
Blazevic et al. (2009) have shown that Baldwin Lake 
does provide a reliable record of past environmental 
change for the region back to 65,000 years. Also, it 
has been shown that data from Baldwin Lake can be 
extended to the entire coastal southwestern region 
of North America and correlated to hemispheric 
paleoclimatic records such as those from ice cores 
in Greenland (Kirby et al., 2006). This thesis uses 
a variety of sedimentological measurements to 
reconstruct the hydrologic history of Baldwin Lake 
at Milankovitch timescales over the past 96,000 
years. The initial isolation, and thus formation, of 
Baldwin Lake is also hypothesized.

Today, CSC faces a perennial fresh water 
shortage, which brings increased importance to 
studying the past climate of the region. Climate 
variability has a direct impact on the availability of 
freshwater in CSC (Kirby et al., 2010). Cities in the 
southern California area use twice as much water as 
is naturally available (Hanak, 2011). Also, population 
trends in 2001 were projected to increase by 30% by 
2020. This population growth will increase demand 
on the already limited water resources (Apple, 2001). 
Regional drought coupled with this population 

growth ensures that CSC will remain freshwater-poor. 
Perennial water shortages cause the region to be 
especially susceptible to hydrologic variability such as 
drought (MacDonald et al., 2008); thus, it necessary 
to have an understanding of natural hydrologic 
variations in the past.

Significantly, the results of this study extend 
knowledge of past hydrologic change in CSC back 
to the end of the last Interglacial (96,000 years 
before present, MIS 5c). The study of past water 
availability, particularly during the last Interglacial, 
is increasingly significant as the last Interglacial may 
provide a potential analog for future global warming 
(Muhs et al., 2006). Importantly, global temperatures 
during the past Interglacial were slightly higher than 
today (North Greenland Ice Core Project members, 
2004; Muhs et al., 2006). Therefore, understanding 
past climatic change during the last Interglacial 
will provide potential insight into how southern 
California will change in the future as global 
warming continues.

An in-depth study of the glacial climate in 
CSC also has implications for understanding future 
climate change. When making predictions for future 
change, it is essential to be aware of the natural 
range of hydrologic variability, as well as the 
amplitude of changes. The glacial period provides a 
good basis for studying these two aspects, as it was 
a time that was characterized by high amplitude 
and high frequency changes in climate (Kirby et 
al., 2006). Examining the end of the last glacial 
also allows an exploration of hydrologic responses 
to potential abrupt climatic “surprises” such as that 
akin to the Younger Dryas (Overpeck, 1996).
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2. Objectives And Hypotheses

3. Background

3.2 Baldwin Lake

3.3 Modern Regional Climate

3.1 Geologic Setting

The objectives of this study are: (1) to explore the 
ontogeny of Baldwin Lake; and, (2) to reconstruct the 
lake’s Milankovitch scale hydrologic variability over the 
past 96,000 years. The hypotheses of this study are: (1) 
The origin of Baldwin Lake is related to valley isolation 
as linked to extension of the Sugarloaf Fan; and, (2) In 
general, deep lake conditions existed during full glacial 
conditions and shallow or dry lake conditions existed 
during interglacials.

The San Bernardino Mountains are a relatively 
young range, located in the eastern extension of the 
Transverse Ranges Geomorphic Province of California 
(Leidy 2003). The Baldwin Valley watershed is 
located in the north block of the mountain system. 
During the Tertiary and early Quaternary periods, 
the north block was part of the Mojave Desert and 
eroded to a low relief and dissected by streams (Leidy, 
2003; Stout, 1976). The region which now contains 
Bear Valley and Baldwin Valley was traversed by 
a small valley prior to uplift (Stout, 1976). The 
block was subsequently elevated 1520 -2130 m and 
tilted northward toward the Mojave Desert by 
late Quaternary time (Leidy, 2003). Due to lateral 
movements of the San Andreas Fault system and 
the Pinto Mountain Fault, the mountain blocks were 
rapidly uplifted during the Pasadenan Orogeny, 
approximately 300,000-500,000 years BP (Stout, 
1976).

The basin containing Bear Valley and Baldwin 
Valley formed by tilting and thrusting along the 
northern and eastern sides of the valley (Stout, 1976). 
It is believed that early sediment deposition in the 
valley is closely related to the age of this original 
thrusting, which began in the mid-Pleistocene, prior 
to the Pasadena Orogeny, and continued through the 
late Pleistocene (Leidy, 2003). According to geologic 
cross-sections of the region, approximately 30 m of 
lacustrine sediment were deposited on top of about 
60 m of older alluvium (Leidy, 2003). Though the 
region is still tectonically active, only minor uplift has 
occurred during the last 10,000 years.

Baldwin Lake is an alpine-playa lake located at 2,040 
m above sea level; it is located 3 km east of Big Bear 
Lake in San Bernardino County, CA. The lake lies 
within the east-west trending Big Bear Valley which 
likely originated from geologically recent thrust faulting 
(Blazevic et al., 2009). Quaternary age unconsolidated 
alluvium, as well as metasedimentary Precambrian(?) 
and Paleozoic basement rocks, surround Baldwin Lake, 
while the valley is enclosed by Precambrian(?) and 
Paleozoic-aged metamorphic rocks (Blazevic et al., 2009).

Baldwin Lake has a small (78 km2) drainage basin, 
which is surrounded by mountain crests and separated 
from Big Bear Lake by the Sugarloaf Fan (Blazevic et 
al., 2009). Under modern conditions, it remains dry for 
an average of 3 to 4 years every 10 years (Blazevic et al., 
2009). The lake is a closed basin, allowing it to serve as 
a precipitation gauge or “evaporation pan”. Due to the 
closed nature of the basin, Baldwin Lake is a sensitive 
recorder of hydrologic changes (Blazevic et al., 2009; 
Kirby et al., 2006). Today, there is a positive correlation 
between total regional winter precipitation and lake level 
at Baldwin Lake (Kirby et al., 2006). This relationship is 
expected to continue into the past for as long as Baldwin 
Lake was characterized by a closed basin geometry.

Southern California has a Mediterranean climate, 
characterized by dry, hot summers and cool, wet 
winters (Bailey, 1966). Average daily summer 
temperatures in Big Bear Valley range from 15.5°C to 
21.1°C, while average daily winter temperatures are 
between 1.6°C and 4.4°C (Flint et al., 2012). Annual 
precipitation in the valley varies; however, the region 
in which Baldwin Lake is situated receives an average 
of 45 to 55 cm. Precipitation in southern California is 
dictated by the average position of the winter season 
polar front in relation to changes in the position of the 
eastern Pacific subtropical high pressure zone (Kirby 
et al., 2006). A weakened subtropical high allows storm 
tracks to shift southward, thus increasing the frequency 
of winter storms across CSC. The frequency of winter 
storms and their associated moisture determine 
whether or not CSC experiences a wet or dry winter. 
Dryer winters, on the other hand, are caused by a 
stronger high pressure zone, as storms are diverted to 



101

3.4 Interglacial and Glacial Climate
This study covers the past 96,000 years including MIS 
5a-c (74 – 96 ka), MIS 4 (57 – 74 ka), MIS 3 (29 – 57 
ka), MIS 2 (12.9 – 29 ka), and the present Interglacial 
(Table 1).

The Last Interglacial (LIG) correlates to Marine 
Isotope Stage 5 (MIS 5a-e: 130,000 to 74,000 years 
before present), and is thought to have peaked between 
125 and 130 thousand years before present (ka) (Oppo 
et al., 2006; Sime, 2013). Temperatures during the LIG, 
based on the maximum isotopic value in a Greenland 
ice core, were approximately 5°K warmer than the 
present (North Greenland Ice Core Project members, 
2004). This is supported by an examination of fauna 

the Pacific Northwest. In addition to the interaction 
between atmospheric circulation and Pacific Ocean 
sea-surface conditions, interannual precipitation 
variability in southern California is influenced by El 
Niño-Southern Oscillation (ENSO) and Pacific-Decadal 
Oscillation (PDO) (Kirby et al., 2009).

ENSO is arguably the most prominent factor in 
CSC’s interannual climate variability (Tudhope et al., 
2001; Mantua and Hare, 2002; Ryu et al., 2008; Zhang et 
al., 2010). The driving mechanism of ENSO is debatable; 
however, there is a clear connection between sea surface 
temperature (SST) and atmospheric circulation, which 
has a direct impact on hydrologic variability in CSC 
(Zhang et al., 2010). During an El-Niño event, SSTs 
along the western coast of North America increase as 
well as CSC winter precipitation; meanwhile, a La Niña 
event is characterized by cooler SSTs and less winter 
precipitation (Tudhope et al., 2001; Kirby et al., 2005). 
The period of ENSO is variable ranging from 2.5 to 7 
years; however, it is usually focused within a 3 to 5 year 
band (Tudhope et al., 2001).

While ENSO is a primary driver of interannual 
climate variability, the PDO is equally important to 
interdecadal climate variability (Mantua and Hare, 
2001; Kirby et al., 2010). A positive PDO is linked to 
similar effects as an El-Niño event, including increased 
precipitation in CSC (Kirby et al., 2010). A notable 
difference between ENSO and the PDO is the length of 
events. According to Mantua and Hare (2001), typical 
modern ENSO events persist for 6 to 18 months, while a 
typical PDO “event” persists for 20 to 30 years.

in the eastern Pacific Ocean, as the ~120 ka fossils 
represent warmer- than-modern marine waters (Muhs 
et al., 2006). Grain size analysis of a core from the 
Gulf of Mexico implies that absolute precipitation was 
not more intense during the LIG in comparison to the 
present (Montero-Serrano, 2011). The end of the LIG 
occurred in a gradual cooling, rather than an abrupt 
climate change (North Greenland Ice Core Project 
members, 2004). By 80 ka, Pacific Ocean fauna began 
to reflect cooler-than-modern marine temperatures 
(Muhs et al., 2006).

Beginning around 75 to 70 ka, corresponding 
with the onset of MIS 4, North America experienced 
the onset of the glacial period as the Laurentide Ice 
Sheet (LIS) and Cordilleran Ice Sheet (CIS) both 
grew rapidly over the continent (Barry, 1983). Coastal 
southwestern North America experienced an increased 
frequency of winter storms during glacial growth, from 
about 65 ka to 50 ka (Kirby et al., 2006). Deep sea 
sediment records suggest that equatorial Pacific SSTs 
were 2°C to 3°C cooler as the ice sheets progressed 
to their maximum, from 70 ka to 30 ka (MIS 3-4; 
Tudhope et al., 2001). Advances of mountain glaciers 
in the San Bernardino Mountains of CSC also occurred 
during MIS 2 (Owen et al., 2003).

The Last Glacial Maximum (LGM), when global 
ice sheets reached their maximum integrated volume, 
occurred from 26.5 to 19.0 ka during the start of 
MIS 2 (Clark et al., 2009). Heusser and Sirocko’s 
(1997) analysis of polliniferous sediments deposited 
in the Santa Barbara basin suggests that southern 
California experienced an increase of up to 700 mm 
of precipitation and a decrease of 9°C in average 
temperature during full glacial conditions. Increased 
precipitation in the region can be attributed to a shift 
in the position of the jet stream due to the extent 
of the North American ice sheets. As the jet stream 
shifted southward, the coastal southwestern United 
States experienced an increased frequency of winter 
storms (Kirby et al., 2006). For example, the LGM is 
characterized by substantial glacial advances in the 
San Bernardino Mountains of CSC (Owen et al., 2003); 
however, lake status during the LGM is yet unknown 
for CSC (Kirby et al., 2013). Clark et al. (2009) 
propose the retreat of the CIS and LIS began between 
19 and 20 ka.
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4. Methods

4.1 Core Collection

4.3 Magnetic Susceptibility

4.4. Total Organic Matter and Total Carbonate

4.4 Grain Size

4.2 Age Control

Core BDL12 was extracted from Baldwin Lake in 
August 2012 using a truck-mounted hollow stem auger 
drill over a course of two days. The core is comprised 
of 41 sections which total 26.5 m of near-continuous 
material with 81.3% recovery. Following extraction, the 
core was split, photographed, described, and sampled 
by Ph.D. candidate Katie Glover at University of 
California, Los Angeles (UCLA).

Age control for BDL12 was determined from seven 
accelerator mass spectrometry (AMS) 14C dates and 
three infra-red stimulated luminescence (IRSL) dates. 
Bulk charcoal and macro-organics from the upper 8 m 

A general drying trend ensued after the end of 
the last glacial, corresponding to the end of MIS 2, 
which can be divided into three phases: (1) the Oldest 
Dryas (19-14.7 ka BP; OD), (2) the Bølling-Allderød 
(14.7-12.9 ka BP; BA), and (3) the Younger Dryas 
(12.9-11.7 ka BP; YD). The OD was characterized 
by a wetter-than-modern climate in CSC (Kirby et 
al., 2013). The southward displacement of the polar 
front jet stream at this time caused more winter 
precipitation, causing at least one significant advance 
of glaciers in the San Bernardino Mountains (Owen 
et al., 2003). The abrupt transition in the BA marked 
a shift to a less wet climate in CSC. Decreased 
winter precipitation, coupled with higher summer 
temperatures, likely led to a retreat of glaciers in the 
San Bernardino Mountains (Owen et al., 2003). A 
recent Lake Elsinore sediment record is used to infer 
smaller magnitude or less frequent winter storms 
during the BA (Kirby et al., 2013). The transition 
from the BA to the YD was abrupt; however, regional 
responses were varied. While eastern and inland 
sites experienced conditions wetter than the BA, 
more coastal sites, such as Lake Elsinore, experience 
conditions drier than the BA (Kirby et al., 2013). 
As a whole, these three stages marked the transition 
from a cold, wet glacial environment to a warm, drier 
Holocene environment.

of the core were analyzed for AMS radiocarbon dates 
at the Keck Carbon Cycle AMS Lab at University of 
California, Irvine in early 2013. Sand grains from the 
lower sections of the core were analyzed for IRSL dates 
at UCLA’s Earth and Planetary Science Optically 
Stimulated Luminescence Lab. IRSL was utilized rather 
than optically stimulated luminescence (OSL) due to 
possible feldspar and zircon inclusions in the quartz 
grains of sediments from the San Bernardino Mountains, 
which can skew OSL dates (Garcia et al., 2013).

Magnetic susceptibility was measured by Katie 
Glover (UCLA) using a Bartington MS3e magnetic 
susceptibility meter. Samples were extracted from the 
core for measurement at 1 cm contiguous intervals.

Total organic matter and total carbonate were 
measured by Katie Glover (UCLA) using the loss-
on-ignition (LOI) method (Dean, 1974). All samples 
were extracted from the core for measurement at 1 cm 
contiguous intervals.

Grain size analysis was performed every fifty 
centimeters using a Malvern Mastersizer 2000 laser 
diffraction grain size analyzer coupled to a Hydro 
2000G. The sample interval was chosen to create a 
general core characterization. A higher resolution 
study may be performed in the future. The samples 
were pretreated by removing organic matter, 
carbonate, and biogenic silica. The organic matter 
was removed by treating the samples with ≥30 mL 
of 30% hydrogen peroxide on a 200oC hot plate. 
The samples were then treated to remove carbonates 
with 10 mL of 1 M HCl and allowed to sit overnight. 
Before the removal of biogenic silica, the samples 
were centrifuged twice and DI water was used to 
ensure the samples were clean. The supernatant was 
removed through decantation. The samples were 
treated to remove biogenic silica with 10 mL of 1 M 
NaOH for four hours on a 50oC hot plate. Following 
the removal of biogenic silica, the samples were again 
centrifuged twice with DI water and the supernatant 
was decanted.
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Blazevic et al. (2009) presented a sediment core from 
Baldwin Lake, which extended to a depth of 1455 cm. Core 
BDL12 reveals similar trends in magnetic susceptibility, 
grain size, total organic matter, and total carbonate.

The age model on the stratigraphic column represents a 
straight-line interpolation between dates. The age model 
of the site includes: basin inception at 95.9 +/- 6.7 ka BP 
during MIS 5c, determined by an IRSL date, up to late-
Pleistocene/early-Holocene lake conditions at 11.6 +/- 932 
ka BP determined by a 14C date. This establishes that the 
sequence includes the entirety of MIS 2 (29 – 14 ka BP). 
The differences in errors between the radiocarbon dates 
and the IRSL dates are due to fundamental differences in 
the nature of the methods. Radiocarbon dating utilizes the 
AMS method, which is very precise back to ~40,000 years. 
IRSL, on the other hand, involves more unknowns and 
assumptions, which produces larger errors.

Figure 1: Core stratigraphy, provided by Katie Glover (UCLA).

5.2 Age Model

5. Results

Stratigraphic Key and Features

5.1 Core Stratigraphy
Core stratigraphy and age control, radiocarbon dates 
and optically stimulated luminescence dates, are shown 
on Figure 1. Core BDL12 is characterized by several 
sedimentologically distinct sections. The top of the 
core, from 5 cm to 150 cm, the sediment is light brown 
massive clay. From 150 cm to 250 cm, the sediment 
transitions to a dark gray massive clay. From 250 cm 
to 1500 cm, the sediment is dominated by massive 
silt with variable banding. During this interval, the 
sediment varies from dark gray to a lighter gray. At a 
depth of 1500 cm to 1550 cm, the sediment transitions 
to light gray massive clay with variable banding still 
present. From 1550 cm to 1950 cm, the sediment is 
brown and shell-rich. At a depth of 1950 cm to 2150 
cm, the sediment transitions to light gray massive 
clay with variable banding. From 2150 cm to 2300 
cm, brown, shell-rich sediment is present. From 2300 
cm to 2425 cm, the sediment is light gray massive 
clay. At a depth of 2425 cm to 2475 cm, the sediment 
is characterized by light gray inorganic poorly-
sorted sand. From 2475 cm to 2600 cm, the sediment 
transitions to light gray massive clay. The bottom of 
the core, from 2600 cm to 2675 cm, the sediment is 
inorganic poorly-sorted sand.

When running the samples through the grain 
size analysis machine, a tuff standard with a known 
distribution was run to evaluate the reliability of the 
results (n = 9524, avg = 4.61, stndev = 0.22). The 
standard was run twice at the beginning of each day, 
once every ten samples, and once at the end of every 
day. For each sample, the analyzer measured it three 
times and calculated an average. Ten size classes are 
reported including mode, d(0.1), d(0.5), and d(0.9).
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5.3 Magnetic Susceptibility

5.4. Total Organic Matter and Total Carbonate

The magnetic susceptibility values of core BDL12 range 
from 5.55 x 10-6 m3/kg to 9.94 x 10-4 m3/kg. The average 
value is 7.06 x 10-5 m3/kg. From the top of the core to 
600 cm, values are generally high and stable; however, 
a prominent decrease is noted at 150 cm, while a sharp 
increase to 9.94 x 10-4 m3/kg occurs at 300 cm. A general 
increasing trend is present from 350 cm to 1200 cm. 
Between 1200 cm and 1550 cm, values become uniformly 
high and stable. From 1600 cm to the bottom of the core, 
the values are characterized by high amplitude variation. 
Two distinct peaks exist at 2050 cm and 2450 cm.

The total organic matter of core BDL12 ranges from 
0.7% to 32.2%, with an average of 13.3%. From the 
top of the core to 250 cm, values are generally low and 
stable. At a depth of 250 cm to 1550 cm, the values 
have low amplitude, high frequency variability. Between 
1550 cm and 2400 cm, the values have high amplitude 
variability with two distinct peaks at 1750 cm and 2200 
cm. From 2450 cm to 2550 cm, the values transition 
to uniformly low and stable. The basal sediments 
contained a negligible amount of organic matter.

For core BDL12, the total carbonate values range 
from 0.7% to 20.9%, with an average of 7.07%. From 
the top of the core to 150 cm, values are generally high 
with a decreasing trend. Between 200 cm and 1750 cm, 
the values transition to low and generally stable, with 
two slight peaks at 700 cm and 1000 cm. At a depth 
of 1750 cm to 2250 cm, the values are characterized 
by sharp increase at 1750 cm followed by a general 
decreasing trend with low amplitude variability. 
Between 2250 cm and 2550 cm, the values transition 
back to general higher levels with a peak at 2400 cm. 
The basal sediments contained a negligible amount of 
carbonate.

Grain Size
The grain size distribution of core BDL12 is dominated 
by silt, with generally low levels of clay and sand 
content (Figure 2). From the top of the core to 150 
cm, silt and clay content decreases, while sand content 
increases. Between 200 cm and 450 cm, grain size 
distribution is generally constant, with a slight increase 
in clay content. At 350 cm, however, there is a sharp 
increase of sand content and corresponding decrease 
in silt content, before a return to the general previous 
levels. From 500 cm to 650, grain size distribution is 
highly variable and alternates between high and low 
silt content with corresponding low and high sand 
content. There is a slight increase in clay content 
at 700 cm. Between 700 cm and 1000 cm, there is a 
decreasing trend in sand content and a corresponding 
increasing trend in silt content. At 1070 cm, there is 
an increase in grain size of the sediment. From 1100 
cm to 1250 cm, there is a generally lower grain size 
with increased clay and silt content and decreased sand 
content. Grain size is highly variable between 1300 cm 
and 1500 cm, though there is a general increasing trend 
in overall grain size. Contrastingly, from 1500 cm to 
1850 cm, there is an overall decreasing trend, as sand 
content steadily decreased and silt content steadily 
increased. At 1900 cm, there was a marked increase of 
grain size. Between 1950 cm to 2350 cm, the grain size 
distribution demonstrated high amplitude variability. 
While clay content decreased and remained generally 
low, sand content alternated between about 20% and 
40% and silt content alternated between 50% and 70%. 
From 2400 cm to 2500 cm, there was a markedly lower 
overall grain size. Sand content was extremely low, 
while silt content and clay content increased. From 
2550 cm to the bottom of core, there is a dramatic 
increase in grain size, as sand content increased to 89%, 
while silt content decreased to 9%.
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6. Discussion

The basal sediments of core BDL12 are more than 
85% sand, which is indicative of a high energy 
environment (Figure 2). The sand is relatively clean 
with low to negligible organic matter and carbonate 
(Figure 2). To determine the origin of this clean sand, 
we must first assume that Baldwin Lake did not exist 
before the valley became isolated via extension of the 
Sugarloaf Fan. Second, we must assume that a fluvial 
environment occupied the valley’s pre- lake location 
with water flowing from Baldwin Valley into Bear 
Valley (Lower Bear Lake). Using these assumptions, 
the basal sand is inferred to represent a possible 
fluvial environment (channel bars? braided system?) 
in Baldwin Valley pre-95.9 ka. It is proposed that 
these sands predate the closure of Baldwin Valley 
by the Sugarloaf Fan, a large fanglomerate on the 
northerly side of Sugarloaf Mountain (Leidy, 2003). 
Sugarloaf Fan, itself, is postulated to have formed as 
a result of a large-scale landsliding event in Green 
Canyon. This debris subsequently separated Big 
Bear Valley and Baldwin Valley into two separate 
topographic depressions, the latter of which became 
host to Baldwin Lake ca. 95.5 ka (Leidy, 2003). 
Immediately following the damming of the valley, 
lacustrine sedimentation ensued covering the basal 
sands with organic poor, low carbonate clayey silts 
(Figure 2). The presence of this massive clayey silt 
possibly represents the initial flooding of the now 
isolated Baldwin Lake basin. The abruptness of this 
transition may also indicate that closure of the valley 
by the Sugarloaf Fan was single rapid event rather 
than a slow progression of the fan across the valley; 
however, our data cannot definitively prove the “rapid” 
closure hypothesis.

Reconstructing paleohydologic variability using 
sedimentological analyses such as magnetic 
susceptibility, total organic matter, total carbonate, 
and grain-size has been established as reliable in CSC, 
as well as in Baldwin Lake in particular (Blazevic et 
al., 2009; Kirby et al., 2006). A positive relationship 
has been noted between high lake levels and high 
magnetic susceptibility (Kirby et al., 2006); however, 
the relationship between low magnetic susceptibility 

6.1 Lake Ontogeny

6.2 Milankovitch Timescale Hydrologic Variability

values and lake level is less clear. Low values may 
be due to a reduction in the inflow of sediment to 
the basin, or the dissolution of magnetic materials 
under reducing conditions in a deep lake environment 
(Blazevic et al., 2009). Increasing total organic matter 
in a lake is considered a function of increasing water 
depth (Blazevic et al., 2009; Kirby et al., 2006). 
Total carbonate content is closely related to the 
precipitation and evaporation dynamics of the lake 
(Blazevic et al., 2009); that is, higher total carbonate 
values are generally indicative of an environment in 
which evaporation has occurred. Grain-size can be 
used to infer changes in the relative energy of the 
lake environment, as well as lake level (Blazevic et 
al., 2009). Within Baldwin Lake, deep lake conditions 
are inferred from fine-grained sediment, while coarser-
grained sediment is indicative of a shallow to dry lake 
environment. With these relationships in mind, it 
is possible to differentiate between wetter and drier 
conditions at Baldwin Lake.

Since the lake’s origin ca. 96,000 years ago, 
Baldwin Lake has been characterized by high 
amplitude, Milankovitch timescale hydrologic 
variability (Kirby et al., 2006; Blazevic et al., 
2009). For example, during the last glacial (MIS 
3), Baldwin Lake fluctuated between shallow and 
deep conditions, perhaps coeval to interstadial – 
stadial conditions as recorded in the Greenland 
ice core records. This is inferred from the presence 
of fine-grained sediment with high percentages 
of total organic matter and low percentages of 
total carbonate content. Wet conditions were 
made possible due to the interactions of the North 
American ice sheets and the polar front jet stream. 
As both the Cordilleran and Laurentide ice sheets 
grew over the continent, the polar front jet stream 
shifted southward with the glacial boundary causing 
increased winter precipitation in the CSC region 
(Kirby et al., 2013). In contrast, during both the 
last interglacial and the modern interglacial, the 
polar front jet stream returned to a more northern 
position, leading to decreased winter precipitation. 
Dryer conditions at Baldwin Lake during these 
intervals are inferred from the presence of coarse-
grained, organic poor sediment with higher values of 
total carbonate content.
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7. Conclusion
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Evaluating a potential connection between the Late Jurassic-Early 
Cretaceous Osa Creek ring complex and the Blackrock andesite, southern 
Sierra Nevada, CA

Rebecca Steever, Katie Pickett and Nancy Chen
Advisor: Dr. Diane Clemens-Knott

Abstract

Recent exploration of the western edge of the Kern Plateau (Tulare Co.; 36.17 degrees N lat.) 
reveals a hornblende andesite that is buttressed against plutonic rocks south of Blackrock 
Mountain. Neogene lavas and cones decorate this part of the Kern Plateau, but the presence 
of biotite granite dikes crosscutting the Blackrock andesite supports the intriguing possibility 
that this non-metamorphosed volcanic rock is instead Mesozoic in age. We first hypothesize 
that the Osa Creek ring complex (OCRC), located 2.5 km to the west, reveals the shallow 
footprint of a stratovolcano and evaluate this magmatic center as a possible source for the 
Blackrock volcanic deposit. Interfingering arcuate dikes of biotite leucogranite and biotite-
hornblende diorite, with rare pyroxene- hornblende gabbro, comprise the ring complex. 
Mineralogy and whole-rock geochemistry is broadly consistent with a comagmatic origin for 
the ring complex and the andesite, which contains comingled basalt pods. U-Pb LA-ICPMS 
dating of zircon separated from a biotite granite dike cross-cutting the andesite yields a 
latest Jurassic to earliest Cretaceous minimum age for the hornblende andesite (mean U-Pb 
date = 161.1 + 3.4 Ma; youngest population = 146.1 + 2.3 Ma). In places, cuspate contacts 
separate the granite dikes from the andesite, suggesting the granite dikes are coeval with the 
surrounding andesite. Zircon crystals separated from a hypabyssal-textured OCRC granite 
yield Early Cretaceous dates (mean U-Pb date = 147.6 + 0.7 Ma; youngest population = 
137.7 + 2.0 Ma). Core-rim zircon dates document growth of individual, zoned zircon crystals 
over c.a. 4 m.y. and support our preferred interpretation that the youngest U-Pb zircon 
age population provides the best constraint of emplacement age. If correct, the Osa Creek 
ring complex is a rare exposed example of Early Cretaceous magmatism, and is c.a. 10 m.y. 
younger than the Blackrock andesite. Similar reasoning would indicate that the Blackrock 
andesite is coeval with the hornblende-rich Summit Gabbro, which crops out across the Kern 
Plateau, and with the regionally extensive Independence dike swarm. Future geochemical and 
geochronologic studies of the Kern Plateau are aimed at revealing details of Sierra Nevada arc 
evolution across the Jurassic- Cretaceous boundary.

Department of Geological Sciences, California State University, Fullerton
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Determining the Nature of the Contact Between the Eastern Sierra 
Nevada Mountain Front and the Big Pine Volcanic Field South of Goodale 
Creek in Owens Valley, California

Jazmine N. Titular
Advisor: Dr. Phil Armstrong

Abstract

The Sierra Nevada Frontal Fault Zone (SNFFZ) located along the western boundary of 
Owens Valley is comprised of numerous Quaternary normal faults. These faults generally 
are assumed to dip 60° and long-term extension rates for Owens Valley are calculated 
assuming these steep dips. Recent studies conducted in the Independence and Lone Pine 
areas of Owens Valley and farther north in the Bishop area show shallow dips of 26-52°. 
These shallow dips affect long-term extension rate calculations and the kinematic history of 
Owens Valley. Quaternary Big Pine Volcanic field (BPV) basalt deposits that crop out along 
the mountain front offer an opportunity to evaluate potential SNFFZ fault orientations in 
this area. This study analyzes the contact between the mostly granitic rocks of the Sierra 
Nevada Mountains and the BPV in the vicinity of Aberdeen from just south of Sawmill 
Creek and north to Goodale Creek. Working hypotheses for this contact include: (1) it is a 
depositional contact along the mountain front and (2) it is a fault contact. These hypotheses 
are tested by mapping the contact and surrounding rocks in detail. GPS locations of the 
contact were taken where the contact is clear. In general, the basalt-granite contact trends 
NNW, however north of Sawmill Creek the contact steps west consistent with the mountain 
front and the faults of the SNFFZ. Locally, especially south of Sawmill Creek, the basalt 
deposits are present on ridges with granitic basement in the intervening valleys so that the 
contact V’s to show an eastward dip, consistent with east-dipping fault contact. Preliminary 
3-point calculations along the contact suggest the contact dips about 25° E. In other areas 
the contact is diffuse with thin scoria deposits located uphill from the presumed location 
of the frontal fault. The mapping is being correlated to detailed Google Earth images to 
better define the relationships between basalt exposure and fault locations. Where the 
contact can be clearly defined, plane-fitting analysis using GPS- and Google Earth-derived 
x,y,z locations may refine potential fault orientations. This work will lead to a better 
understanding of the relationships between the BPV distribution and SNFFZ faults and may 
help constrain the SNFFZ orientation for kinematic analysis.

Department of Geological Sciences, California State University, Fullerton
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Documenting Recovery From A Deep Water, Middle Triassic Section From 
Fossil Hills Member, Humboldt Range Locality, Southern Canyon, NV

Christine Tong
Advisor: Dr. Nicole Bonuso

Abstract Introduction

Background

Study Site and Study Importance

Physical and chemical processes constantly alters 
Earth’s delicate systems since the beginning of this 
planet, which gives scientists a more difficult job to 
determine how life was Earth millions of years ago. 
Among the processes, climate change contributes 
a huge factor towards living organisms’ existence. 
During the End-Permian mass extinctions, volcanic 
eruptions spewed basaltic lava widespread. This 
deformed continental structures, increased oceanic 
temperatures, caused anoxic conditions in the sea 
and eliminated nearly all-living species. This extinc-
tion marks a significant time in our geological time 
scale because it affected almost all species in various 
locations as well as change the climate. Research 
indicates that some taxa survived during the early 
Triassic but most died out before the Middle Trias-
sic. This study aims to document the deep-water fos-
sils at Fossil Hill from American Canyon, NV during 
the Middle Triassic. Documenting at local paleocom-
munity structure of the Middle Triassic is needed 
to fully understand long lasting re-diversification. 
The hand samples Dr. Bonuso’s lab collected from 
Fossil Hill, Humbolt Range locality, South American 
Canyon, Nevada were made into petrographic thin 
sections. The relative abundance of fossils and sedi-
mentary grain within the rock was analyzed via thin 
section point counting of grids 75mm (21x 12). From 
the thin sections, majority of the samples are wacke-
stone containing mainly thin bivalves, cephalopods, 
foraminifera, ostracods, and radiolarians. Samples 
were also all cemented by calcite grain. These indices 
support a high diversity of organisms located in an 
upper ocean basin.

A mass extinction occurred between the Permian-Triassic 
boundary (252 million years ago). Multiple leading 
hypotheses describe how this extinction occurred, but 
most scientists agree that the Siberian traps released 
volatiles into the area (Payne and Clapham, 2015). 
As a result, an abundance of CO2 released into the 
atmosphere causing marine hypoxia and anoxia most 
likely caused the extinction. Long-term recovery after 
this mass extinction is largely understudied and thus 
studying the Middle-Triassic American Canyon Fossil 
will provide new within a deep marine environment. 
Foraminifera comprise most of the fossils. This study 
aims to identify and track foraminifera abundance 
through time. Observation of community reconstruction 
through recovery phase of the end Permian Mass 
Extinction in the deep ocean will be done. Here we 
record a more complete initial recovery stage after the 
End-Permian mass extinction by documenting the fossil 
that persist beyond the early Triassic. While other 
students complete paleoecological studies in Middle 
Triassic shallow water sections, this study focuses on 
completing a paleoecological study of a Middle Triassic 
deep-water section. Thus, this study will provide a key 
component in document the overall marine community. 
We expect to find a diverse and abundant foraminifera 
community preserved in grain-supported thin sections.

The study conducted in American Canyon, NV near 
Lovelock, NV ~70 miles northeast of Reno, once flourished 
as an ocean, but now resides as an arid environment. 

Department of Geological Sciences, California State University, Fullerton
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Results
Methods

Thin Section Micro-Analysis

Lithological Evidence

Foraminifera

Hand Sample Macro-Analysis

Foraminifera are shelled, heterotrophic protozoa and 
are also valuable to biostratigraphy (Benton, 2009). 
They live by floating and drifting within the water 
column. The calcareous test makes it well preserved 
in oceanic sediments. They are usually preserved in 
the benthic areas. Foraminifera are great still for 
biostratigraphic studies because they have short 
lifespan and they live all over the world. They have a 
well-defined biostratigraphy range which is important 
to dating the stratigraphic record (Fadel 2012).

Upon this study, literary research was done to have a 
more in-depth idea of the geological concepts such as 
mass extinction and foraminifera. From there I have a 
two-part analysis on a macro and micro level.

Hand samples were collected in 2007 from Fossil Hill, 
NV by Dr. Nicole Bonuso and later made into thin 
sections. The rock samples were cut and polished using 
a vibrating LAP machine: making fossil identification 
suitable for hand sample observation.

A thin-section is a laboratory rock preparation necessary 
for petrographic microscope analysis (Figure 2). Bulk 
samples were cut into 45 x 70 mm billets and sent to 
Burnham Petrographic (a service company that prepares 
rock thin-sections). From the thin sections, ten were 
selected and digitally imaged at Dr. Coretti’s lab at 
USC, using a Zeiss automated microscope. Images were 
scanned and stitched together on AxioVision SE64 
program under 2,5x objective. After thin-sections were 
prepared, I classified the carbonate material using the 
Dunham classification scheme (Dunham, 1962), along 
with modifications (Ashton F. Embry III and Klovan, 
1971), to determine overall carbonate environment. This 
method classifies carbonate rocks according to depositional 
texture: for example, grain-supported carbonate rocks that 
contain small amounts of mud are classified as packstone 
(Dunham, 1962). To document the skeletal and mineral 
grain components of the thin-sections, I used a grid system 
75mm (21x12) known as the point count method, and 
record where the grids intersect skeletal material and 
mineral grains. For this study, the focus are on skeletal 
material, and major voids are omitted (Jaanusson, 1972).

These methods enhance visibility, provide 
randomization, and properly document thin sections. 
The goals of these methods are to provide data for 
determining the abundance of skeletal material within 
carbonate facies, which helps determine whether the 
rocks are fossil or grain supported and provide evidence 
that support or refute my hypothesis.

The samples collected were all either mudstone or 
wackestone; mud matrixes of all the samples were 
all at least 49% or greater. FHAM8 has the lowest 
micrite abundance with 49.33%. FHAM6 has a fossil 
concentration of 30.13% and FHAM8 has a fossil 
concentration of 47.12%. The average fossil abundance 
from the twelve samples is 18.86%. Five of the twelve 
samples contained a type of foraminifera (A or B; Table 
2). Most samples contain poor lamination with an 
exception of FHAM4, FHAM5, FHAM7, and FHAM9. 
All samples have a granular calcite cement/crust.

This specific study area focuses on Fossil Hill member of 
the Middle Triassic Favret Formation because this will 
reveal how life recovered after the end-Permian Mass 
Extinction. Post-Permian mass extinction has shown to 
be the longest rate of recovery within the Phanerozoic. 
Some research suggest that “survival in interval” 
took place after the early Triassic so most taxas that 
survived the mass extinction eventually died off before 
they made it to the Middle Triassic (Twitchett, 2004). 
The importance of the location is that these foraminifera 
are from the Middle Triassic, which continues to live on to 
become the Modern fauna. This is a marker for a forever 
changed marine community. This deep-water section 
is only one piece of the puzzle adding to a complete 
documentation of paleoecological study from shallow to 
deep-water environment. The samples collected within the 
deep ocean area of the shelf, which contained foraminifera 
is important because foraminifera are relatively abundant 
and usually the only fossils found in deep waters.
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Lithological Evidence

Abundance and Diversity

The samples collected were all either mudstone or 
wackestone; mud matrixes of all the samples were 
all at least 49% or greater. FHAM8 has the lowest 
micrite abundance with 49.33%. FHAM6 has a fossil 
concentration of 30.13% and FHAM8 has a fossil 
concentration of 47.12%. The average fossil abundance 
from the twelve samples is18.86%. Five of the twelve 
samples contained a type of foraminifera (A or B; Table 
2). Most samples contain poor lamination with an 
exception of FHAM4, FHAM5, FHAM7, and FHAM9. 
All samples have a granular calcite cement/crust.

Based on the abundance count, during the Middle-
Triassic there was a diverse stratum of mollusks up to 
six types in a sample. This may have occurred during 
the long period of recovery, where the study area 
remained undersea due to melting polar caps and rifting 
of Pangaea. This created a stable ocean above the study 
area for these benthic organisms to prosper.

There is also a strong indication that the study 
area may have been located on the upper ocean basin 
due to the amount of micrite in all the samples with 
the amount of lamination (Flugel, 2004). The presence 
of foraminifera is also a good indicator of depth due 
to its ability to biostratigraphic range. Conclusions 
can be made that the Fossil Hill member located in 
the Humboldt Range locality was once undersea in 
the upper basin ocean compared to its current arid 
environment. Sea levels have lowered allowing us to 
observe the types of organisms which once prospered.

During the recovery of the Permian-Middle-Triassic 
extinction, many organisms started flourishing. These 
modern faunas in ocean basins consisted mainly of 
thin-shelled bivalves and radiolarians (Flugel, 2004). 
The results may not have the best representation of 
the variety of fossils in the area because the counted 
points did not represent the entire range of fossils in the 
samples. The counted points were to show the ratio of 
biomass to matrix in the sample (Table 1). Most samples 
are micrite-rich with smaller proportion of allochem 
(sparite and fossils). The samples all have 3 or more 
different types of fossils excluding FHAM4 (1 type) and 
FHAM7 (2 types) showing a general diversity of skeletal 
grains. Exclusion of FHAM4, thin shelled bivalves were 
the most abundant fossil in all the samples.

Discussion

Conclusion

Depositional Environment
During the Middle-Triassic, polar caps were warmer 
resulting in high sea levels. The study area was also 
submerged under the Panthalassic Ocean allowing fine-
grain mud to settle and accumulate. Most of the samples 
contained a large percentage of micrite to skeletal grains, 
although most of the samples are wackestone instead of 
mudstone suggesting an environment with a high level 
of mud. The fossils identified are bivalves, cephalopods, 
foraminifera, ostracods and radiolarians. These mollusks 
microfossils have a biostratigraphy in the upper middle 
ocean floor. Samples also exhibited poor lamination with 
a few slides that had bioturbation. It can be inferred 

Figure 1. Paleogeo-
graphic map during the 
Middle-Triassic focusing 
on North America.

Figure 2: A thin section 
of foraminifera FHAM1. 
[a] Thin bivalve, [b] 
ostracod, [c] burrow of 
radiolarians, [d] foarmA, 
[e] cephalopod.

that the samples collected are from the toe of the slope 
(SMF3) due to the diversity of fossils but contained 
mostly wackestone.
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Table 1: Summary table of fossil abundance.

FHAMI
(208)

Samples 
Name (Points 
counted)

Rock 
Classification 
(Dunham)

Fossils (Type and 
Abundance)

Concentration %

69.71% matrix 
24.04% fossil

75.85% matrix 
16.42% fossil

62.07% matrix 
11.33% fossil

93.58% matrix 
3.21% fossil

94.29% matrix 
2.14% fossil

62.18% matrix 
30.13% fossil

61.85% matrix 
16.46% fossil

49.33% matrix 
47.12% fossil

64.53% matrix 
23.15% fossil

66.90% matrix 
8.45% fossil

73.78% matrix 
16.89 fossil

60.70% matrix 
27.07% fossil

Full Description (color, texture % 
allochems, types of fossils)

FHAM2B
(207)

FHAM3 
(203)*

FHAM4 
(187)

FHAM5 
(140)

FHAM6 
(156)

FHAM7 
(249)

FHAM8 
(225)*

FHAM10 
(203)*

FHAM11 
(142)

FHAM12* 
(225)

FHAM13 
(229)

wackestone 8.65% bivalves
6.73% cephalopods
6.73% cephalopods (internal)
1.44% ostracods
0.48% foram A

•
•
•
•
•

•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

•
•
•
•
•
•

•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•

•
•
•
•
•
•

•
•
•

•
•

•

•

Light grey brown, poorly laminated, the 
fossils line up but they aren't in a good 
formation
Cephalopods, bivalves, foram A, foram B, 
radiolarians, ostracods

9.18% bivalves
2.89% radiolarians
1.93% cephalopod
1.45% foram A
0.48% cephalopod (internal)
0.48% ostracod

Poorly laminated but still laminated in a 
linear fashion
Cephalopods, bivalves, ostracods, foram A, 
radiolarians

6.83% bivalves
2.95% cephalopods
1.47% foram A

Poorly laminated
Cephalopods, bivalves,
foarm A, radiolarians, ostracods

2.14% cephalopod
1.07% bivalves

Bioturbated; the top left corner has 
another matrix going on
Bivalves, radiolarians

3.78% bivalves
3.57% radiolarians
2.14% cephalopod

Bioturbated/homogeneous matrix
Cephalopods, bivalves

23.72% bivalves
5.13% cephalopod  
0.64% radiolarians
0.64% ostracods

Laminated
Cephalopods, bivalves,
radiolarians, ostracods

12.46% bivalves Bioturbated
Bivalves, radiolarians, foarm A

8.45% bivalves Poorly laminated
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A Cluster Theorem for Generalized Toeplitz Matrices

Toeplitz matrices have been studied extensively since the early 1900s and are arguably the most 
important matrices in applications. Consequently, there have been several results about Toeplitz 
matrices, many of which aid in understanding the asymptotic distribution of the eigenvalues. We 
intend to understand the asymptotic behavior of eigenvalues of a larger class of matrices intro-
duced by Kac, Murdock, and Szegő [4, 2] called generalized Toeplitz matrices, defined as follows. 
Let a(s,t) (the symbol of the matrix) be a complex valued function such that the Fourier series

is defined on [0, 1] × [−π, π]. For each integer n, define the n × n matrix
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a(s, t) =
∞∑

k=−∞
âk(s)e

ikt (1)

is defined on [0, 1]× [−π, π]. For each integer n, define the n× n matrix

Tn(a) =

[
âj−i

(
i+ j

2n+ 2

)]n−1

i,j=0

(2)

(We will also use Tn for Tn(a) throughout the paper.)
We impose the following condition throughout this paper

∞∑
k=−∞

||ak|| < M < ∞ (3)

where ‖ak‖ = sup
s∈[0,1]

|ak(s)|. We denote the eigenvalues of Tn by

λ1(Tn), λ2(Tn), λ3(Tn), . . . , λn(Tn).
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The goal of this paper is to find a cluster for the eigenvalues of Tn. That is, we want to find a 
set in the complex plane such that any of its neighborhoods contains all of the eigenvalues of 
Tn, except at most o(n) of them. We begin by defining the essential range    (a), by:

where each             , is a connected bounded open set, and U0 is an unbounded connected 
open set. Using (5) we can define the extended range of the symbol a as

Hence, the extended range      (a) is the union of the range of a and all the bounded 
components of its complement. It is the range and everything inside the range.

We can now state the main result of this paper. The following is a generalization of a 
result of Paolo Tilli [6].

Theorem 1. If a(s,t) satisfies (3), then the extended range     (a) is a cluster of the eigenvalues 
of Tn(a). Then for any open set A containing     (a) there holds

where γ(A,n) “counts” how many eigenvalues of Tn lie inside A.
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Tn except at most o(n) of them.
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The goal of this paper is to find a cluster for the eigenvalues of Tn. That is, we want
to find a set in the complex plane such that any of its neighborhoods contains all of the
eigenvalues of Tn, except at most o(n) of them. We begin by defining the essential range
R(a), by :

R(a) :=
{
z ∈ C : m

{
a−1(D(z, r))

}
> 0, ∀r > 0

}
, (4)

where m(E) is the Lebesgue measure of E, and D(z, r) denotes an open disk in the complex
plane with radius r centered at z. In other words, the essential range is the range minus
isolated points.

We will focus our attention on symbols a(s, t) where a ∈ L∞, the spaces of all esentially
bounded complex valued functions on (−π, π). Consequently, R(a) is a compact set; hence
its complement has just one unbounded connected component. Thus,

C\R(a) =: U0 ∪
∞⋃
j=1

Uj , Ui ∩ Uj = ∅ if i �= j, (5)

where each Uj , j ≥ 1, is a connected bounded open set, and U0 is an unbounded connected
open set. Using (5) we can define the extended range of the symbol a as

ER(a) := C\U0

Hence, the extended range ER(a) is the union of the range of a and all the bounded
components of its complement. It is the range and everything inside the range.

We can now state the main result of this paper. The following is a generalization of a
result of Paolo Tilli [6].

Theorem 1. If a(s, t) satisfies (3), then the extended range ER(a) is a cluster of the
eigenvalues of Tn(a). Then for any open set A containing ER(a) there holds

lim
n→∞

γ(A, n)

n
= 1, (6)

where γ(A, n) “counts” how many eigenvalues of Tn lie inside A.

This theorem states that any ε-neighborhood of ER(a) contains all of the eigenvalues of
Tn except at most o(n) of them.

2 Prerequisite Statements

We assume a : [0, 1] × (−π, π) → C is essentially bounded and we denote Tn the n × n
generalized Toeplitz matrix associated to a.

The following definition is used heavily throughout the paper.

Definition 1. Given a matrix A, A∗ denotes the Hermitian conjugate, and ||A||F denotes
the Frobenius norm given by ||A||2F := trA∗A.

The following definition is used in Gershgoran’s disc theorem. For a proof, see [3], p. 344.

2

(7)

(8)

Since C\K is connected, by the Mergelyan theorem we can find for every ε ∈ (0, 1) we can
uniformly approximate F with a polynomial P so that |P (ξ)− F (ξ)| ≤ ε, for all ξ ∈ K.
Let γ(n) count how many eigenvalues of Tn lie inside D and let χD be the characteristic
function of D. Since 1− ε ≤ |C(λ)| whenever λ ∈ D, we have

(1− ε)γ(n) ≤
n∑

j=1

χD(λj(Tn)|P (λj(Tn))|

≤




n∑
j=1

χD(λj(Tn)




1/2


n∑
j=1

|P (λj(Tn))|2



1/2

= λ(n)1/2




n∑
j=1

|P (λj(Tn))|2



1/2

Since P (λj(Tn)) = λj(P (Tn)), squaring we obtain

(1− ε)2γ(n) ≤
n∑

j=1

|P (λj(Tn))|2 ≤ ||P (Tn)||2F

The inequality above follows from lemma 3. Dividing by n and taking limits, we have, from
Lemma 2,

lim sup
n→∞

(1− ε)2
γ(n)

n
≤ 1

2π

π∫

−π

∫ 1

0
|P (a(s, t))|2dsdt ≤ ε2

The last inequality holds since |P (z)| ≤ ε whenever z ∈ ER(a). From the arbitrariness of
ε, the last inequality implies γ(n) = o(n).

Consider an arbitrary open set A ⊃ ER(a). We will show that at most o(n) eigenvalues
of Tn lie outside of A.

By lemma 1 there exists a compact set G such that all the eigenvalues of Tn lie inside
G. Let C := G ∩ (C\A). If C is empty, then all of the eigenvalues of Tn lie insideA and
we are done. If C is nonempty, for every z ∈ C lies within some open disk Dz centered at
z which contains only o(n) eigenvalues of Tn. Thus, C can be covered by a family of open
disks {Dz}z∈c, each of which contains at most o(n) eigenvalues. C being a compact set, a
finite sub-covering exists; hence C itself contains only o(n) eigenvalues of Tn. Since C ∪ A
contains all the eigenvalues of Tn, equation (6) follows and the proof is complete since A
was an arbitrary open set containing ER(a).

4 Future Work

We have established that the extended range of a is a cluster for the eigenvalues of Tn;
the question now becomes, What are the properties of this cluster? In the Toeplitz case
the entries are taken from a symbol of one variable and the essential range is known to
be a curve. For generalized Toeplitz matrices we have entries being taken from a symbol
of two variables, so the essential range is more difficult to visualize. We will explore this
numerically using MATLAB.
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Next we have the key lemma used in the proof of the main result.

Lemma 3. Let P be a complex polynomial in C and Tn be a generalized Toeplitz matrix,
we have

n∑
j=1

|P (λj(Tn))|2 ≤ ||P (Tn)||2F

.

Proof. We use the Schur’s decomposition on P (Tn). We have P (Tn) = UTU∗, where U is
a unitary matrix and T is in upper triangular matrix. We have

P (Tn)P (Tn)
∗ = UTU∗UT ∗U∗

= UTT ∗U∗

Which implies
tr(P (Tn)P (Tn)

∗) = tr(TT ∗)

Thus,

||P (Tn)||2F = ||T ||2F
=

∑
i,j

|tij |2

=
∑
i

|tii|2 + nonnegative terms

=
∑

|λ|2 + nonnegative terms

Where the last sum is the sum of all the squares of the eigenvalues of P (Tn). This implies,
∑

|λ|2 ≤ ||P (Tn)||2F . Therefore,
n∑

j=1
|P (λj(Tn))|2 ≤ ||P (Tn)||2F .

The proof of the cluster theorem makes use of Mergelyan’s Theorem, a proof of which
can be found in [5], p. 390.

Theorem 4 (Mergelyan’s Theorem). A function F, continuous on a compact set K and
holomorphic in its interior, can be uniformly approximated on K by polynomials, provided
C\K is connected.

3 Proof of Cluster Theorem

Proof of Theorem 1. Choose some z /∈ ER(a). Since ER(a) is closed, there exists some
small open disk D centered at z such that D ∩ ER(a) = ∅. Let K = ER(a)∪D and define
F on K as

f(ξ) =

{
1 if ξ ∈ D
0 if ξ ∈ ER(a).
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Definition 2. For an n× n matrix A, we define the ith Gerschgorin disk Ci to be the disk
in the complex plane with center aii and radius

ri =
∑
j �=i

|aij |

that is,
Ci = {z ∈ C : |z − aii| ≤ ri}

Theorem 2 (Gershgorin’s disc theorem). Let A ∈ Mn×n(C). Then every eigenvalue of A
is contained in a Gerschgorin disk.

The importance of this theorem is that it enables us to show that all of the eigenvalues of
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For the proof of the main result we need to estimate the eigenvalues of polynomials of
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T r
n (T ∗

n)
k
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2π
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−π

∫ 1

0
ar(s, t)ak(s, t) ds dt (7)

From this theorem, we deduce the following lemma.
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Toeplitz matrix, then there holds
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Since C\K is connected, by the Mergelyan theorem we can find for every ε ∈ (0, 1) we can
uniformly approximate F with a polynomial P so that |P (ξ)− F (ξ)| ≤ ε, for all ξ ∈ K.
Let γ(n) count how many eigenvalues of Tn lie inside D and let χD be the characteristic
function of D. Since 1− ε ≤ |C(λ)| whenever λ ∈ D, we have

(1− ε)γ(n) ≤
n∑

j=1

χD(λj(Tn)|P (λj(Tn))|

≤




n∑
j=1

χD(λj(Tn)




1/2


n∑
j=1

|P (λj(Tn))|2



1/2

= λ(n)1/2




n∑
j=1

|P (λj(Tn))|2



1/2

Since P (λj(Tn)) = λj(P (Tn)), squaring we obtain

(1− ε)2γ(n) ≤
n∑

j=1

|P (λj(Tn))|2 ≤ ||P (Tn)||2F

The inequality above follows from lemma 3. Dividing by n and taking limits, we have, from
Lemma 2,

lim sup
n→∞

(1− ε)2
γ(n)

n
≤ 1

2π

π∫

−π

∫ 1

0
|P (a(s, t))|2dsdt ≤ ε2

The last inequality holds since |P (z)| ≤ ε whenever z ∈ ER(a). From the arbitrariness of
ε, the last inequality implies γ(n) = o(n).

Consider an arbitrary open set A ⊃ ER(a). We will show that at most o(n) eigenvalues
of Tn lie outside of A.

By lemma 1 there exists a compact set G such that all the eigenvalues of Tn lie inside
G. Let C := G ∩ (C\A). If C is empty, then all of the eigenvalues of Tn lie insideA and
we are done. If C is nonempty, for every z ∈ C lies within some open disk Dz centered at
z which contains only o(n) eigenvalues of Tn. Thus, C can be covered by a family of open
disks {Dz}z∈c, each of which contains at most o(n) eigenvalues. C being a compact set, a
finite sub-covering exists; hence C itself contains only o(n) eigenvalues of Tn. Since C ∪ A
contains all the eigenvalues of Tn, equation (6) follows and the proof is complete since A
was an arbitrary open set containing ER(a).

4 Future Work

We have established that the extended range of a is a cluster for the eigenvalues of Tn;
the question now becomes, What are the properties of this cluster? In the Toeplitz case
the entries are taken from a symbol of one variable and the essential range is known to
be a curve. For generalized Toeplitz matrices we have entries being taken from a symbol
of two variables, so the essential range is more difficult to visualize. We will explore this
numerically using MATLAB.
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Next we have the key lemma used in the proof of the main result.

Lemma 3. Let P be a complex polynomial in C and Tn be a generalized Toeplitz matrix,
we have

n∑
j=1

|P (λj(Tn))|2 ≤ ||P (Tn)||2F

.

Proof. We use the Schur’s decomposition on P (Tn). We have P (Tn) = UTU∗, where U is
a unitary matrix and T is in upper triangular matrix. We have

P (Tn)P (Tn)
∗ = UTU∗UT ∗U∗

= UTT ∗U∗

Which implies
tr(P (Tn)P (Tn)

∗) = tr(TT ∗)

Thus,

||P (Tn)||2F = ||T ||2F
=

∑
i,j

|tij |2

=
∑
i

|tii|2 + nonnegative terms

=
∑

|λ|2 + nonnegative terms

Where the last sum is the sum of all the squares of the eigenvalues of P (Tn). This implies,
∑

|λ|2 ≤ ||P (Tn)||2F . Therefore,
n∑

j=1
|P (λj(Tn))|2 ≤ ||P (Tn)||2F .

The proof of the cluster theorem makes use of Mergelyan’s Theorem, a proof of which
can be found in [5], p. 390.

Theorem 4 (Mergelyan’s Theorem). A function F, continuous on a compact set K and
holomorphic in its interior, can be uniformly approximated on K by polynomials, provided
C\K is connected.

3 Proof of Cluster Theorem

Proof of Theorem 1. Choose some z /∈ ER(a). Since ER(a) is closed, there exists some
small open disk D centered at z such that D ∩ ER(a) = ∅. Let K = ER(a)∪D and define
F on K as

f(ξ) =

{
1 if ξ ∈ D
0 if ξ ∈ ER(a).
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4Since C\K is connected, by the Mergelyan theorem we can find for every ε ∈ (0, 1) we can
uniformly approximate F with a polynomial P so that |P (ξ)− F (ξ)| ≤ ε, for all ξ ∈ K.
Let γ(n) count how many eigenvalues of Tn lie inside D and let χD be the characteristic
function of D. Since 1− ε ≤ |C(λ)| whenever λ ∈ D, we have

(1− ε)γ(n) ≤
n∑

j=1

χD(λj(Tn)|P (λj(Tn))|

≤




n∑
j=1

χD(λj(Tn)




1/2


n∑
j=1

|P (λj(Tn))|2



1/2

= λ(n)1/2




n∑
j=1

|P (λj(Tn))|2



1/2

Since P (λj(Tn)) = λj(P (Tn)), squaring we obtain

(1− ε)2γ(n) ≤
n∑

j=1

|P (λj(Tn))|2 ≤ ||P (Tn)||2F

The inequality above follows from lemma 3. Dividing by n and taking limits, we have, from
Lemma 2,

lim sup
n→∞

(1− ε)2
γ(n)

n
≤ 1

2π

π∫

−π

∫ 1

0
|P (a(s, t))|2dsdt ≤ ε2

The last inequality holds since |P (z)| ≤ ε whenever z ∈ ER(a). From the arbitrariness of
ε, the last inequality implies γ(n) = o(n).

Consider an arbitrary open set A ⊃ ER(a). We will show that at most o(n) eigenvalues
of Tn lie outside of A.

By lemma 1 there exists a compact set G such that all the eigenvalues of Tn lie inside
G. Let C := G ∩ (C\A). If C is empty, then all of the eigenvalues of Tn lie insideA and
we are done. If C is nonempty, for every z ∈ C lies within some open disk Dz centered at
z which contains only o(n) eigenvalues of Tn. Thus, C can be covered by a family of open
disks {Dz}z∈c, each of which contains at most o(n) eigenvalues. C being a compact set, a
finite sub-covering exists; hence C itself contains only o(n) eigenvalues of Tn. Since C ∪ A
contains all the eigenvalues of Tn, equation (6) follows and the proof is complete since A
was an arbitrary open set containing ER(a).

4 Future Work

We have established that the extended range of a is a cluster for the eigenvalues of Tn;
the question now becomes, What are the properties of this cluster? In the Toeplitz case
the entries are taken from a symbol of one variable and the essential range is known to
be a curve. For generalized Toeplitz matrices we have entries being taken from a symbol
of two variables, so the essential range is more difficult to visualize. We will explore this
numerically using MATLAB.
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4. Future Work

We have established that the extended range of a is a cluster for the eigenvalues of Tn; the 
question now becomes, What are the properties of this cluster? In the Toeplitz case the entries 
are taken from a symbol of one variable and the essential range is known to be a curve. For 
generalized Toeplitz matrices we have entries being taken from a symbol of two variables, 
so the essential range is more difficult to visualize. We will explore this numerically using 
MATLAB.
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On kth Roots in Semigroups of Order-preserving Partial Permutations

Classification of roots of elements in a variety of mathematical structures has been of growing 
interest in recent years. Useful applications in fields such as matrix theory and cryptography 
are well-known. This paper is an extension of recent work which characterized the elements 
in specific groups and semigroups that possess k th roots (see [2] and [3]). In particular, this 
problem has been studied in the symmetric group, the alternating group, the symmetric 
inverse monoid, among others. In this paper, we shall discuss the same problem for the 
semigroup of order-preserving partial permutations. From now on, we denote this as POI(n).

POI(n) is an algebraic structure known as a semigroup. Before introducing related 
properties and examples of semigroups, we recall the definition of a more familiar algebraic 
structure closely related to semigroups, groups.

1.

2.

3.

4.

Closure: 

Associativity:

Existence of an Identity: An element e    G is called the identity element if a ∗ e = a = e ∗ a 
for every a    G.

Existence of Inverses: For each a    G, there is an inverse element d    G such that a ∗ d = e 
and d ∗ a = e.

A group is a nonempty set G equipped with a binary operation * that satisfies the following 
axioms:

Ulysses Alvarez
Advisor: Dr. Scott Annin

Abstract

I. Introduction

This paper investigates the semigroup of partially ordered injections of an n-element set, 
POI(n), which is a submonoid of the symmetric inverse monoid. We present results aimed at 
characterizing the elements of POI(n) which possess k th roots for fixed integers n and k. Using 
the software package Groups, Algorithms, and Programming (GAP), we collected data that 
led to several results in this paper involving the relationships between the domain and range 
patterns of the elements in POI(n). Through these results, among other things, we are able to 
completely characterize the elements of POI(n) for n < 8 that have square roots in POI(n).
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This paper investigates the semigroup of partially ordered injections of an n-element set, POI(n),
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1 Introduction

Classification of roots of elements in a variety of mathematical structures has been of growing interest in
recent years. Useful applications in fields such as matrix theory and cryptography are well-known. This
paper is an extension of recent work which characterized the elements in specific groups and semigroups that
possess kth roots (see [2] and [3]). In particular, this problem has been studied in the symmetric group, the
alternating group, the symmetric inverse monoid, among others. In this paper, we shall discuss the same
problem for the semigroup of order-preserving partial permutations. From now on, we denote this as POI(n).

POI(n) is an algebraic structure known as a semigroup. Before introducing related properties and examples
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The most important example of a group for our purposes in this paper is the symmetric 
group. It consists of the permutations of the set {1, 2, . . . , n}. Its elements are expressible in 
a traditional two-line notation which we will later adapt for use in the semigroup POI(n). If 
the reader wishes to learn more about the symmetric group, please refer to [7]. A semigroup 
is a nonempty set S equipped with binary operation * that satisfies the first two axioms of 
a group, closure and associativity. Thus, every group is also a semigroup. However, there 
are many other semigroups, such as bands and the symmetric inverse monoid, that are not 
groups. By excluding the group properties of the existence of an identity element and the 
inverse elements, semigroups are a much more broad class of abstract algebraic structures than 
groups. For instance, while there are only two non-isomorphic groups with six elements, there 
are 15,793 non-isomorphic semigroups with six elements [6]! The semigroup of interest in this 
paper, POI(n), is a subsemigroup of the symmetric inverse monoid. The symmetric inverse 
monoid, denoted SIM(n), is an algebraic structure consisting of all partial permutations of 
the set {1, 2, . . . , n}.

The collection POI(n) of order-preserving partial permutations inherits associativity 
from SIM(n) and is readily seen to be closed, hence forms a submonoid. The traditional 
two-line notation, often used to express elements of the symmetric group, is convenient for 
expressing the elements of POI(n) as well. This is simply because in order to determine 
whether an element of SIM(n) is also in POI(n), the integers listed on the bottom row have to 
be in increasing order. Let us understand this notation with an example.

Example 1.1. Consider                                              ,where 1 maps to 4, 2 maps to 5, 3 

maps to 6, and 4, 5, 6, 7 map to nothing. Since the bottom row also has the integers 
increasing from left to right, we know that not only is     in SIM(7), but it is also in POI(7).
 
Now, let                                            ,where 1 maps to 2, 2 maps to 4, 3 maps to 7, 4 

maps to 5, 7 maps to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the 
numbers from left to right, 7 decreases to 5. This implies that while     is in SIM(7), it is not 
in POI(7). Note here that     is a square root of     , since

However,     does not belong to POI(7). Thus,     has a square root in SIM(7), but, as the 
results later in this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, 
partial is reflected by possible dashes in the second row, which means that the integer above it 
maps to nothing, and permutation means we cannot have any repeating numbers in the second 
row. For POI(n), the additional requirement is that the distinct elements appearing on the 
bottom row appear in strictly increasing order.
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Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑

j=0

(
n

j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):

2

groups. By excluding the group properties of the existence of an identity element and the inverse elements,
semigroups are a much more broad class of abstract algebraic structures than groups. For instance, while
there are only two non-isomorphic groups with six elements, there are 15,793 non-isomorphic semigroups
with six elements [6]! The semigroup of interest in this paper, POI(n), is a subsemigroup of the symmetric
inverse monoid. The symmetric inverse monoid, denoted SIM(n), is an algebraic structure consisting of
all partial permutations of the set {1, 2, . . . , n}.

The collection POI(n) of order-preserving partial permutations inherits associativity from SIM(n) and
is readily seen to be closed, hence forms a submonoid. The traditional two-line notation, often used to
express elements of the symmetric group, is convenient for expressing the elements of POI(n) as well. This
is simply because in order to determine whether an element of SIM(n) is also in POI(n), the integers listed
on the bottom row have to be in increasing order. Let us understand this notation with an example.

Example 1.1. Consider α1 =

(
1 2 3 4 5 6 7
4 5 6 − − − −

)
, where 1 maps to 4, 2 maps to 5, 3 maps to 6,

and 4, 5, 6, 7 map to nothing. Since the bottom row also has the integers increasing from left to right, we
know that not only is α1 in SIM(7), but it is also in POI(7).

Now, let α2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)
, where 1 maps to 2, 2 maps to 4, 3 maps to 7, 4 maps to 5, 7 maps

to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the numbers from left to right, 7
decreases to 5. This implies that while α2 is in SIM(7), it is not in POI(7). Note here that α2 is a square
root of α1, since

α2
2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)2

=

(
1 2 3 4 5 6 7
4 5 6 − − − −

)

= α1.

However, α2 does not belong to POI(7). Thus, α1 has a square root in SIM(7), but, as the results later in
this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, partial is reflected
by possible dashes in the second row, which means that the integer above it maps to nothing, and permutation
means we cannot have any repeating numbers in the second row. For POI(n), the additional requirement is
that the distinct elements appearing on the bottom row appear in strictly increasing order.

Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑

j=0

(
n

j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):

2

groups. By excluding the group properties of the existence of an identity element and the inverse elements,
semigroups are a much more broad class of abstract algebraic structures than groups. For instance, while
there are only two non-isomorphic groups with six elements, there are 15,793 non-isomorphic semigroups
with six elements [6]! The semigroup of interest in this paper, POI(n), is a subsemigroup of the symmetric
inverse monoid. The symmetric inverse monoid, denoted SIM(n), is an algebraic structure consisting of
all partial permutations of the set {1, 2, . . . , n}.

The collection POI(n) of order-preserving partial permutations inherits associativity from SIM(n) and
is readily seen to be closed, hence forms a submonoid. The traditional two-line notation, often used to
express elements of the symmetric group, is convenient for expressing the elements of POI(n) as well. This
is simply because in order to determine whether an element of SIM(n) is also in POI(n), the integers listed
on the bottom row have to be in increasing order. Let us understand this notation with an example.

Example 1.1. Consider α1 =

(
1 2 3 4 5 6 7
4 5 6 − − − −

)
, where 1 maps to 4, 2 maps to 5, 3 maps to 6,

and 4, 5, 6, 7 map to nothing. Since the bottom row also has the integers increasing from left to right, we
know that not only is α1 in SIM(7), but it is also in POI(7).

Now, let α2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)
, where 1 maps to 2, 2 maps to 4, 3 maps to 7, 4 maps to 5, 7 maps

to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the numbers from left to right, 7
decreases to 5. This implies that while α2 is in SIM(7), it is not in POI(7). Note here that α2 is a square
root of α1, since

α2
2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)2

=

(
1 2 3 4 5 6 7
4 5 6 − − − −

)

= α1.

However, α2 does not belong to POI(7). Thus, α1 has a square root in SIM(7), but, as the results later in
this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, partial is reflected
by possible dashes in the second row, which means that the integer above it maps to nothing, and permutation
means we cannot have any repeating numbers in the second row. For POI(n), the additional requirement is
that the distinct elements appearing on the bottom row appear in strictly increasing order.

Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑

j=0

(
n

j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):

2

groups. By excluding the group properties of the existence of an identity element and the inverse elements,
semigroups are a much more broad class of abstract algebraic structures than groups. For instance, while
there are only two non-isomorphic groups with six elements, there are 15,793 non-isomorphic semigroups
with six elements [6]! The semigroup of interest in this paper, POI(n), is a subsemigroup of the symmetric
inverse monoid. The symmetric inverse monoid, denoted SIM(n), is an algebraic structure consisting of
all partial permutations of the set {1, 2, . . . , n}.

The collection POI(n) of order-preserving partial permutations inherits associativity from SIM(n) and
is readily seen to be closed, hence forms a submonoid. The traditional two-line notation, often used to
express elements of the symmetric group, is convenient for expressing the elements of POI(n) as well. This
is simply because in order to determine whether an element of SIM(n) is also in POI(n), the integers listed
on the bottom row have to be in increasing order. Let us understand this notation with an example.

Example 1.1. Consider α1 =

(
1 2 3 4 5 6 7
4 5 6 − − − −

)
, where 1 maps to 4, 2 maps to 5, 3 maps to 6,

and 4, 5, 6, 7 map to nothing. Since the bottom row also has the integers increasing from left to right, we
know that not only is α1 in SIM(7), but it is also in POI(7).

Now, let α2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)
, where 1 maps to 2, 2 maps to 4, 3 maps to 7, 4 maps to 5, 7 maps

to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the numbers from left to right, 7
decreases to 5. This implies that while α2 is in SIM(7), it is not in POI(7). Note here that α2 is a square
root of α1, since

α2
2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)2

=

(
1 2 3 4 5 6 7
4 5 6 − − − −

)

= α1.

However, α2 does not belong to POI(7). Thus, α1 has a square root in SIM(7), but, as the results later in
this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, partial is reflected
by possible dashes in the second row, which means that the integer above it maps to nothing, and permutation
means we cannot have any repeating numbers in the second row. For POI(n), the additional requirement is
that the distinct elements appearing on the bottom row appear in strictly increasing order.

Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑

j=0

(
n

j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):

2

groups. By excluding the group properties of the existence of an identity element and the inverse elements,
semigroups are a much more broad class of abstract algebraic structures than groups. For instance, while
there are only two non-isomorphic groups with six elements, there are 15,793 non-isomorphic semigroups
with six elements [6]! The semigroup of interest in this paper, POI(n), is a subsemigroup of the symmetric
inverse monoid. The symmetric inverse monoid, denoted SIM(n), is an algebraic structure consisting of
all partial permutations of the set {1, 2, . . . , n}.

The collection POI(n) of order-preserving partial permutations inherits associativity from SIM(n) and
is readily seen to be closed, hence forms a submonoid. The traditional two-line notation, often used to
express elements of the symmetric group, is convenient for expressing the elements of POI(n) as well. This
is simply because in order to determine whether an element of SIM(n) is also in POI(n), the integers listed
on the bottom row have to be in increasing order. Let us understand this notation with an example.

Example 1.1. Consider α1 =

(
1 2 3 4 5 6 7
4 5 6 − − − −

)
, where 1 maps to 4, 2 maps to 5, 3 maps to 6,

and 4, 5, 6, 7 map to nothing. Since the bottom row also has the integers increasing from left to right, we
know that not only is α1 in SIM(7), but it is also in POI(7).

Now, let α2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)
, where 1 maps to 2, 2 maps to 4, 3 maps to 7, 4 maps to 5, 7 maps

to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the numbers from left to right, 7
decreases to 5. This implies that while α2 is in SIM(7), it is not in POI(7). Note here that α2 is a square
root of α1, since

α2
2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)2

=

(
1 2 3 4 5 6 7
4 5 6 − − − −

)

= α1.

However, α2 does not belong to POI(7). Thus, α1 has a square root in SIM(7), but, as the results later in
this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, partial is reflected
by possible dashes in the second row, which means that the integer above it maps to nothing, and permutation
means we cannot have any repeating numbers in the second row. For POI(n), the additional requirement is
that the distinct elements appearing on the bottom row appear in strictly increasing order.

Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑

j=0

(
n

j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):

2

groups. By excluding the group properties of the existence of an identity element and the inverse elements,
semigroups are a much more broad class of abstract algebraic structures than groups. For instance, while
there are only two non-isomorphic groups with six elements, there are 15,793 non-isomorphic semigroups
with six elements [6]! The semigroup of interest in this paper, POI(n), is a subsemigroup of the symmetric
inverse monoid. The symmetric inverse monoid, denoted SIM(n), is an algebraic structure consisting of
all partial permutations of the set {1, 2, . . . , n}.

The collection POI(n) of order-preserving partial permutations inherits associativity from SIM(n) and
is readily seen to be closed, hence forms a submonoid. The traditional two-line notation, often used to
express elements of the symmetric group, is convenient for expressing the elements of POI(n) as well. This
is simply because in order to determine whether an element of SIM(n) is also in POI(n), the integers listed
on the bottom row have to be in increasing order. Let us understand this notation with an example.

Example 1.1. Consider α1 =

(
1 2 3 4 5 6 7
4 5 6 − − − −

)
, where 1 maps to 4, 2 maps to 5, 3 maps to 6,

and 4, 5, 6, 7 map to nothing. Since the bottom row also has the integers increasing from left to right, we
know that not only is α1 in SIM(7), but it is also in POI(7).

Now, let α2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)
, where 1 maps to 2, 2 maps to 4, 3 maps to 7, 4 maps to 5, 7 maps

to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the numbers from left to right, 7
decreases to 5. This implies that while α2 is in SIM(7), it is not in POI(7). Note here that α2 is a square
root of α1, since

α2
2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)2

=

(
1 2 3 4 5 6 7
4 5 6 − − − −

)

= α1.

However, α2 does not belong to POI(7). Thus, α1 has a square root in SIM(7), but, as the results later in
this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, partial is reflected
by possible dashes in the second row, which means that the integer above it maps to nothing, and permutation
means we cannot have any repeating numbers in the second row. For POI(n), the additional requirement is
that the distinct elements appearing on the bottom row appear in strictly increasing order.

Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑

j=0

(
n

j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):

2

groups. By excluding the group properties of the existence of an identity element and the inverse elements,
semigroups are a much more broad class of abstract algebraic structures than groups. For instance, while
there are only two non-isomorphic groups with six elements, there are 15,793 non-isomorphic semigroups
with six elements [6]! The semigroup of interest in this paper, POI(n), is a subsemigroup of the symmetric
inverse monoid. The symmetric inverse monoid, denoted SIM(n), is an algebraic structure consisting of
all partial permutations of the set {1, 2, . . . , n}.

The collection POI(n) of order-preserving partial permutations inherits associativity from SIM(n) and
is readily seen to be closed, hence forms a submonoid. The traditional two-line notation, often used to
express elements of the symmetric group, is convenient for expressing the elements of POI(n) as well. This
is simply because in order to determine whether an element of SIM(n) is also in POI(n), the integers listed
on the bottom row have to be in increasing order. Let us understand this notation with an example.

Example 1.1. Consider α1 =

(
1 2 3 4 5 6 7
4 5 6 − − − −

)
, where 1 maps to 4, 2 maps to 5, 3 maps to 6,

and 4, 5, 6, 7 map to nothing. Since the bottom row also has the integers increasing from left to right, we
know that not only is α1 in SIM(7), but it is also in POI(7).

Now, let α2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)
, where 1 maps to 2, 2 maps to 4, 3 maps to 7, 4 maps to 5, 7 maps

to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the numbers from left to right, 7
decreases to 5. This implies that while α2 is in SIM(7), it is not in POI(7). Note here that α2 is a square
root of α1, since

α2
2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)2

=

(
1 2 3 4 5 6 7
4 5 6 − − − −

)

= α1.

However, α2 does not belong to POI(7). Thus, α1 has a square root in SIM(7), but, as the results later in
this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, partial is reflected
by possible dashes in the second row, which means that the integer above it maps to nothing, and permutation
means we cannot have any repeating numbers in the second row. For POI(n), the additional requirement is
that the distinct elements appearing on the bottom row appear in strictly increasing order.

Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑

j=0

(
n

j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):

2

groups. By excluding the group properties of the existence of an identity element and the inverse elements,
semigroups are a much more broad class of abstract algebraic structures than groups. For instance, while
there are only two non-isomorphic groups with six elements, there are 15,793 non-isomorphic semigroups
with six elements [6]! The semigroup of interest in this paper, POI(n), is a subsemigroup of the symmetric
inverse monoid. The symmetric inverse monoid, denoted SIM(n), is an algebraic structure consisting of
all partial permutations of the set {1, 2, . . . , n}.

The collection POI(n) of order-preserving partial permutations inherits associativity from SIM(n) and
is readily seen to be closed, hence forms a submonoid. The traditional two-line notation, often used to
express elements of the symmetric group, is convenient for expressing the elements of POI(n) as well. This
is simply because in order to determine whether an element of SIM(n) is also in POI(n), the integers listed
on the bottom row have to be in increasing order. Let us understand this notation with an example.

Example 1.1. Consider α1 =

(
1 2 3 4 5 6 7
4 5 6 − − − −

)
, where 1 maps to 4, 2 maps to 5, 3 maps to 6,

and 4, 5, 6, 7 map to nothing. Since the bottom row also has the integers increasing from left to right, we
know that not only is α1 in SIM(7), but it is also in POI(7).

Now, let α2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)
, where 1 maps to 2, 2 maps to 4, 3 maps to 7, 4 maps to 5, 7 maps

to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the numbers from left to right, 7
decreases to 5. This implies that while α2 is in SIM(7), it is not in POI(7). Note here that α2 is a square
root of α1, since

α2
2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)2

=

(
1 2 3 4 5 6 7
4 5 6 − − − −

)

= α1.

However, α2 does not belong to POI(7). Thus, α1 has a square root in SIM(7), but, as the results later in
this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, partial is reflected
by possible dashes in the second row, which means that the integer above it maps to nothing, and permutation
means we cannot have any repeating numbers in the second row. For POI(n), the additional requirement is
that the distinct elements appearing on the bottom row appear in strictly increasing order.

Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑

j=0

(
n

j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):

2

groups. By excluding the group properties of the existence of an identity element and the inverse elements,
semigroups are a much more broad class of abstract algebraic structures than groups. For instance, while
there are only two non-isomorphic groups with six elements, there are 15,793 non-isomorphic semigroups
with six elements [6]! The semigroup of interest in this paper, POI(n), is a subsemigroup of the symmetric
inverse monoid. The symmetric inverse monoid, denoted SIM(n), is an algebraic structure consisting of
all partial permutations of the set {1, 2, . . . , n}.

The collection POI(n) of order-preserving partial permutations inherits associativity from SIM(n) and
is readily seen to be closed, hence forms a submonoid. The traditional two-line notation, often used to
express elements of the symmetric group, is convenient for expressing the elements of POI(n) as well. This
is simply because in order to determine whether an element of SIM(n) is also in POI(n), the integers listed
on the bottom row have to be in increasing order. Let us understand this notation with an example.

Example 1.1. Consider α1 =

(
1 2 3 4 5 6 7
4 5 6 − − − −

)
, where 1 maps to 4, 2 maps to 5, 3 maps to 6,

and 4, 5, 6, 7 map to nothing. Since the bottom row also has the integers increasing from left to right, we
know that not only is α1 in SIM(7), but it is also in POI(7).

Now, let α2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)
, where 1 maps to 2, 2 maps to 4, 3 maps to 7, 4 maps to 5, 7 maps

to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the numbers from left to right, 7
decreases to 5. This implies that while α2 is in SIM(7), it is not in POI(7). Note here that α2 is a square
root of α1, since

α2
2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)2

=

(
1 2 3 4 5 6 7
4 5 6 − − − −

)

= α1.

However, α2 does not belong to POI(7). Thus, α1 has a square root in SIM(7), but, as the results later in
this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, partial is reflected
by possible dashes in the second row, which means that the integer above it maps to nothing, and permutation
means we cannot have any repeating numbers in the second row. For POI(n), the additional requirement is
that the distinct elements appearing on the bottom row appear in strictly increasing order.

Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑

j=0

(
n

j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):

2



124

gap > squareElements := function(n, k)

> local m, i, y;

> m := Size(POI(n));

> y := [];

> for i in [1..m] do

> y[i] := Elements(POI(n))[i] ∧ k;

> Print(y[i]);

> od;

> end;

Note that Size(POI(n)) gives the number of elements in POI(n), and y[i] := Elements(POI(n))[i] ∧ 2
squares all of the individual elements and places the results in a list for the chosen value of n. GAP uses a
different notation than the two-line notation we showed in Example 1.1 to present the elements of POI(n):

Notation. If σ ∈ POI(n) and if rank(σ) = m, then GAP denotes σ as follows:

σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm], (1.1)

where a1, a2, . . . , am, b1, b2 . . . , bm ∈ {1, 2, . . . , n}, ai < ai+1, and bi < bi+1, for each i ∈ {1, 2, . . . ,m− 1}.

Definition 1.3. Let σ ∈ SIM(n) such that rank(σ) = 0. Then σ is the null element of SIM(n), which
GAP denotes as 〈null of SIM(n)〉.

Definition 1.4. If σ ∈ POI(n) with rank(σ) = m and if ai = bi for each i ∈ {1, 2, . . . ,m}, then σ is a
partial identity. GAP denotes such elements as 〈 identity on [a1, a2, . . . , am] 〉.

Remark. For every σ ∈ POI(n), there exists a positive integer k such that σk is a partial identity element
or the null element.

Example 1.5. As an illustration of the Remark above, note that

([1, 2, 3, 4, 5] → [1, 2, 3, 5, 6])3 = 〈identity on [1, 2, 3]〉
and

([1, 2, 3, 4] → [2, 3, 4, 5])5 = 〈null of SIM(7)〉.

In [3], a theorem was proven that classifies the elements of SIM(n) that have kth roots. We want to develop
results that allow us to classify elements of POI(n) which have kth roots in POI(n). Of course, for all
elements of POI(n), [3] addresses whether or not a kth root in SIM(n) exists. But our concern in this paper
is whether or not such a kth root exists in the subsemigroup POI(n).

Now that we have established the necessary definitions and notation, we are ready to introduce some tools
that will help us approach our problem.

2 Preliminary Results

We begin this section with a useful remark that is self-evident, but which is worth recording since it will be
used repeatedly in the results that follow.
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to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the numbers from left to right, 7
decreases to 5. This implies that while α2 is in SIM(7), it is not in POI(7). Note here that α2 is a square
root of α1, since

α2
2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)2

=

(
1 2 3 4 5 6 7
4 5 6 − − − −

)

= α1.

However, α2 does not belong to POI(7). Thus, α1 has a square root in SIM(7), but, as the results later in
this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, partial is reflected
by possible dashes in the second row, which means that the integer above it maps to nothing, and permutation
means we cannot have any repeating numbers in the second row. For POI(n), the additional requirement is
that the distinct elements appearing on the bottom row appear in strictly increasing order.

Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑
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(
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j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):
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2 gap > squareElements := function(n, k)

> local m, i, y;

> m := Size(POI(n));

> y := [];

> for i in [1..m] do

> y[i] := Elements(POI(n))[i] ∧ k;

> Print(y[i]);

> od;

> end;

Note that Size(POI(n)) gives the number of elements in POI(n), and y[i] := Elements(POI(n))[i] ∧ 2
squares all of the individual elements and places the results in a list for the chosen value of n. GAP uses a
different notation than the two-line notation we showed in Example 1.1 to present the elements of POI(n):

Notation. If σ ∈ POI(n) and if rank(σ) = m, then GAP denotes σ as follows:

σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm], (1.1)

where a1, a2, . . . , am, b1, b2 . . . , bm ∈ {1, 2, . . . , n}, ai < ai+1, and bi < bi+1, for each i ∈ {1, 2, . . . ,m− 1}.

Definition 1.3. Let σ ∈ SIM(n) such that rank(σ) = 0. Then σ is the null element of SIM(n), which
GAP denotes as 〈null of SIM(n)〉.

Definition 1.4. If σ ∈ POI(n) with rank(σ) = m and if ai = bi for each i ∈ {1, 2, . . . ,m}, then σ is a
partial identity. GAP denotes such elements as 〈 identity on [a1, a2, . . . , am] 〉.

Remark. For every σ ∈ POI(n), there exists a positive integer k such that σk is a partial identity element
or the null element.

Example 1.5. As an illustration of the Remark above, note that

([1, 2, 3, 4, 5] → [1, 2, 3, 5, 6])3 = 〈identity on [1, 2, 3]〉
and

([1, 2, 3, 4] → [2, 3, 4, 5])5 = 〈null of SIM(7)〉.

In [3], a theorem was proven that classifies the elements of SIM(n) that have kth roots. We want to develop
results that allow us to classify elements of POI(n) which have kth roots in POI(n). Of course, for all
elements of POI(n), [3] addresses whether or not a kth root in SIM(n) exists. But our concern in this paper
is whether or not such a kth root exists in the subsemigroup POI(n).

Now that we have established the necessary definitions and notation, we are ready to introduce some tools
that will help us approach our problem.

2 Preliminary Results

We begin this section with a useful remark that is self-evident, but which is worth recording since it will be
used repeatedly in the results that follow.
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results that allow us to classify elements of POI(n) which have kth roots in POI(n). Of course, for all
elements of POI(n), [3] addresses whether or not a kth root in SIM(n) exists. But our concern in this paper
is whether or not such a kth root exists in the subsemigroup POI(n).

Now that we have established the necessary definitions and notation, we are ready to introduce some tools
that will help us approach our problem.

2 Preliminary Results

We begin this section with a useful remark that is self-evident, but which is worth recording since it will be
used repeatedly in the results that follow.
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groups. By excluding the group properties of the existence of an identity element and the inverse elements,
semigroups are a much more broad class of abstract algebraic structures than groups. For instance, while
there are only two non-isomorphic groups with six elements, there are 15,793 non-isomorphic semigroups
with six elements [6]! The semigroup of interest in this paper, POI(n), is a subsemigroup of the symmetric
inverse monoid. The symmetric inverse monoid, denoted SIM(n), is an algebraic structure consisting of
all partial permutations of the set {1, 2, . . . , n}.

The collection POI(n) of order-preserving partial permutations inherits associativity from SIM(n) and
is readily seen to be closed, hence forms a submonoid. The traditional two-line notation, often used to
express elements of the symmetric group, is convenient for expressing the elements of POI(n) as well. This
is simply because in order to determine whether an element of SIM(n) is also in POI(n), the integers listed
on the bottom row have to be in increasing order. Let us understand this notation with an example.

Example 1.1. Consider α1 =

(
1 2 3 4 5 6 7
4 5 6 − − − −

)
, where 1 maps to 4, 2 maps to 5, 3 maps to 6,

and 4, 5, 6, 7 map to nothing. Since the bottom row also has the integers increasing from left to right, we
know that not only is α1 in SIM(7), but it is also in POI(7).

Now, let α2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)
, where 1 maps to 2, 2 maps to 4, 3 maps to 7, 4 maps to 5, 7 maps

to 6, and 5, 6 map to nothing. Note that on the bottom row, if we read the numbers from left to right, 7
decreases to 5. This implies that while α2 is in SIM(7), it is not in POI(7). Note here that α2 is a square
root of α1, since

α2
2 =

(
1 2 3 4 5 6 7
2 4 7 5 − − 6

)2

=

(
1 2 3 4 5 6 7
4 5 6 − − − −

)

= α1.

However, α2 does not belong to POI(7). Thus, α1 has a square root in SIM(7), but, as the results later in
this paper show, no square root in POI(7).

In terms of this notation, the definition of SIM(n) becomes more apparent. For example, partial is reflected
by possible dashes in the second row, which means that the integer above it maps to nothing, and permutation
means we cannot have any repeating numbers in the second row. For POI(n), the additional requirement is
that the distinct elements appearing on the bottom row appear in strictly increasing order.

Definition 1.2. Let σ ∈ SIM(n). The rank of σ is defined by the size of its domain or, equivalently, the
size of its range.

Note that in Example 1.1, the rank of α1 is 3 and the rank of α2 is 5.

In order to better understand the structure of POI(n) and investigate our problem about the kth roots
described at the outset, we can gather data by using the GAP (Groups, Algorithms, Programming) program
[5], which is a free software for computational discrete algebra. GAP generates the elements of POI(n) for
small n ∈ N. We can then raise each of these elements to the kth power. The resulting list of kth powers

constitutes precisely the set of elements that have kth roots. The size of POI(n), given by
n∑

j=0

(
n

j

)2

, grows

rather quickly as the value of n is increased. Therefore, it is too time-consuming to collect the necessary
data by hand. Here is GAP code that creates the list of kth powers in POI(n) (Note that POI(n) is already
a built-in semigroup in GAP):

2
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equivalently, the size of its range.

Note that Size(POI(n)) gives the number of elements in POI(n), and 
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In [3], a theorem was proven that classifies the elements of SIM(n) that have k th roots. 
We want to develop results that allow us to classify elements of POI(n) which have k th roots 
in POI(n). Of course, for all elements of POI(n), [3] addresses whether or not a k th root in 
SIM(n) exists. But our concern in this paper is whether or not such a k th root exists in the 
subsemigroup POI(n).

Now that we have established the necessary definitions and notation, we are ready to 
introduce some tools that will help us approach our problem.

We begin this section with a useful remark that is self-evident, but which is worth 
recording since it will be used repeatedly in the results that follow.

Example 2.1. Let                                                     Then for c = 3, the sequence (2.1)

is strictly decreasing, for c = 4 it is constant, and for c = 5 it is strictly increasing.
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                                                an inverse of
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defined terms of the sequence is necessarily finite.

The next lemma is a direct consequence of Definition 2.2.
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Remark. For every                  there exists a positive integer k such that σk is a partial 
identity element or the null element.

Example 1.5. As an illustration of the Remark above, note that

gap > squareElements := function(n, k)

> local m, i, y;

> m := Size(POI(n));

> y := [];

> for i in [1..m] do

> y[i] := Elements(POI(n))[i] ∧ k;

> Print(y[i]);

> od;

> end;

Note that Size(POI(n)) gives the number of elements in POI(n), and y[i] := Elements(POI(n))[i] ∧ 2
squares all of the individual elements and places the results in a list for the chosen value of n. GAP uses a
different notation than the two-line notation we showed in Example 1.1 to present the elements of POI(n):

Notation. If σ ∈ POI(n) and if rank(σ) = m, then GAP denotes σ as follows:
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where a1, a2, . . . , am, b1, b2 . . . , bm ∈ {1, 2, . . . , n}, ai < ai+1, and bi < bi+1, for each i ∈ {1, 2, . . . ,m− 1}.

Definition 1.3. Let σ ∈ SIM(n) such that rank(σ) = 0. Then σ is the null element of SIM(n), which
GAP denotes as 〈null of SIM(n)〉.
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Remark. Let τ ∈ POI(n) and c be in the domain of τ. Then, since τ is order-preserving, observe that the
sequence

{c, τ(c), τ2(c), . . . , τk(c), . . .} (2.1)

is either constant, strictly increasing, or strictly decreasing. In the first case, the constant sequence carries
on in an infinite sequence, whereas in the latter two situations, the number of defined terms of the sequence
is necessarily finite.

Example 2.1. Let τ =

(
1 2 3 4 5 6
− 1 2 4 6 −

)
∈ POI(6). Then for c = 3, the sequence (2.1) is strictly

decreasing, for c = 4 it is constant, and for c = 5 it is strictly increasing.

Definition 2.2. Let σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). Then, σ−1 = [b1, b2, . . . , bm] →
[a1, a2, . . . , am] is an inverse of σ. Note that (σ−1)−1 = σ, and that

σ ◦ σ−1 = 〈identity on [b1, b2, . . . , bm]〉

and

σ−1 ◦ σ = 〈identity on [a1, a2, . . . , am]〉.

The next lemma is a direct consequence of Definition 2.2.

Lemma 2.3. Let k ≥ 2 and σ ∈ POI(n). Then, σ has a kth root in POI(n) if and only if σ−1 has a kth

root POI(n).

Proof By symmetry it suffices to prove the forward direction. Suppose that σ has a kth root in POI(n), say
τ. That is, τk = σ. Now it is easy to see that (τ−1)k = (τk)−1 = σ−1, which proves that σ−1 has a kth root
in POI(n). �

Lemma 2.4. Let k ≥ 2 and σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). If there exists an i such that
1 ≤ i ≤ m and 0 < |ai − bi| < k, then σ does not have a kth root in POI(n).

Proof By way of contradiction, suppose that σ has a kth root in POI(n), say τ , and that there exists an i
with 1 ≤ i ≤ m such that 0 < |ai−bi| < k. If ai < bi, then the sequence (2.1) for c = ai is strictly increasing.
This implies that bi − ai ≥ k since for each j ≥ 0, τ j+1(ai) − τ j(ai) ≥ 1. Thus, we have a contradiction. If
ai > bi, we obtain a similar contradiction. �

Example 2.5. The element [1, 4, 6, 7] → [3, 5, 9, 10] does not have a square root in POI(10), and [3, 5, 6,
7, 8, 9, 10] → [103, 104, 106, 107, 108, 109, 110] does not have a 100th root in POI(110) by Lemma 2.4.

Lemma 2.6. Let k ≥ 2 and σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). If ai = bi+1 or ai+1 = bi for
some 1 ≤ i ≤ m− 1, then σ does not have a kth root in POI(n).

Proof By way of contradiction, suppose σ = τk for some τ ∈ POI(n). This implies that for each j ∈
{1, . . . ,m} we have τk(aj) = bj . Fix i ∈ {1, . . . ,m− 1}. If ai = bi+1, then the sequences

{ai, τ(ai), τ2(ai), . . . , τk−1(ai), bi} (2.2)

and

{ai+1, τ(ai+1), τ
2(ai+1), . . . , τ

k−1(ai+1), bi+1} (2.3)
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are strictly decreasing, since the notation in (1.1) requires that bi+1 > bi and ai+1 > ai. It follows from
(2.3) that τ(ai+1), τ

2(ai+1), . . . , τ
k−1(ai+1) are strictly between ai and ai+1 since ai = bi+1, hence not in the

domain of σ. Furthermore, τ(ai) = τ(bi+1) = τ(τk(ai+1)) = τk(τ(ai+1)) = σ(τ(ai+1)), which implies that
τ(ai+1) is in the domain of σ, a contradiction. If ai+1 = bi, then we reach a similar contradiction by using
(2.2). �

Example 2.7. Using Lemma 2.6, we can see immediately that none of the following elements have kth roots
for any k ≥ 2 :

[2, 10] → [10, 16],

[1, 2, 10, 26] → [1, 10, 16, 26],

[51, 52, 53, 56, 58, 59, 60] → [51, 52, 53, 54, 56, 59, 60]

and

[56, 58] → [54, 56].

Definition 2.8. For elements of POI(n) of rank m, say σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm], we will define
the spacing of σ to be d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm where di = ai+1 − ai, rj = bj+1 − bj ,
and c� = b� − a� with i, j ∈ {1, . . . ,m− 1} and � ∈ {1, . . . ,m}.

Remark. The reader has likely noticed that relationships exist among the parameters ai, bi, ci, di, and ri.
With Definition 2.8, we have following equations, the first of which results by repeated application of the
formula ai+1 = ai + di :

ai+k = ai +
i+k−1∑
j=i

dj , for k ≥ 0 (2.4)

bi+1 = a1 + c1 +
i∑

j=1

rj = ai+1 + ci+1 = bi + ri = ai + ri + ci, (2.5)

and

c�+1 = c1 +

�∑
j=1

(rj − dj) = c� + r� − d�, (2.6)

where i, � ∈ {1, . . . ,m− 1}.

Example 2.9. Here are some examples to illustrate Definition 2.8.

(a) The spacing of [36, 48] → [48, 50] is 12/2; 12, 2.

(b) The spacing of [1, 2, 4] → [3, 4, 7] is 1, 2/1, 3; 2, 2, 3.

(c) The spacing of [100, 101, 102, 103, 104] → [103, 104, 105, 106, 107] is 1, 1, 1, 1/1, 1, 1, 1; 3, 3, 3, 3, 3.

(d) The spacing of [3, 6, 7] → [1, 3, 7] is 3, 1/2, 4;−2,−3, 0.

We can rephrase Lemma 2.6 using the spacing notation of Definition 2.8 as follows:
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are strictly decreasing, since the notation in (1.1) requires that bi+1 > bi and ai+1 > ai. It follows from
(2.3) that τ(ai+1), τ

2(ai+1), . . . , τ
k−1(ai+1) are strictly between ai and ai+1 since ai = bi+1, hence not in the

domain of σ. Furthermore, τ(ai) = τ(bi+1) = τ(τk(ai+1)) = τk(τ(ai+1)) = σ(τ(ai+1)), which implies that
τ(ai+1) is in the domain of σ, a contradiction. If ai+1 = bi, then we reach a similar contradiction by using
(2.2). �

Example 2.7. Using Lemma 2.6, we can see immediately that none of the following elements have kth roots
for any k ≥ 2 :

[2, 10] → [10, 16],

[1, 2, 10, 26] → [1, 10, 16, 26],

[51, 52, 53, 56, 58, 59, 60] → [51, 52, 53, 54, 56, 59, 60]

and

[56, 58] → [54, 56].

Definition 2.8. For elements of POI(n) of rank m, say σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm], we will define
the spacing of σ to be d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm where di = ai+1 − ai, rj = bj+1 − bj ,
and c� = b� − a� with i, j ∈ {1, . . . ,m− 1} and � ∈ {1, . . . ,m}.

Remark. The reader has likely noticed that relationships exist among the parameters ai, bi, ci, di, and ri.
With Definition 2.8, we have following equations, the first of which results by repeated application of the
formula ai+1 = ai + di :

ai+k = ai +
i+k−1∑
j=i

dj , for k ≥ 0 (2.4)

bi+1 = a1 + c1 +
i∑

j=1

rj = ai+1 + ci+1 = bi + ri = ai + ri + ci, (2.5)

and

c�+1 = c1 +

�∑
j=1

(rj − dj) = c� + r� − d�, (2.6)

where i, � ∈ {1, . . . ,m− 1}.

Example 2.9. Here are some examples to illustrate Definition 2.8.

(a) The spacing of [36, 48] → [48, 50] is 12/2; 12, 2.

(b) The spacing of [1, 2, 4] → [3, 4, 7] is 1, 2/1, 3; 2, 2, 3.

(c) The spacing of [100, 101, 102, 103, 104] → [103, 104, 105, 106, 107] is 1, 1, 1, 1/1, 1, 1, 1; 3, 3, 3, 3, 3.

(d) The spacing of [3, 6, 7] → [1, 3, 7] is 3, 1/2, 4;−2,−3, 0.

We can rephrase Lemma 2.6 using the spacing notation of Definition 2.8 as follows:

5

Definition 2.8. For elements of POI(n) of rank m, say                                                 
we will define the spacing of                                                                       where 
di = ai+1 − ai, rj = bj+1 − bj, and 

Example 2.9. Here are some examples to illustrate Definition 2.8.

and

Lemma 2.10. Let k ≥ 2 and the spacing of                                                              
be                                                                If                               for some                      
                             then    does not have a k th root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose 
that di = ci or

We can rephrase Lemma 2.6 using the spacing notation of Definition 2.8 as follows:

Remark. The reader has likely noticed that relationships exist among the parameters ai, bi, 
ci, di, and ri. With Definition 2.8, we have following equations, the first of which results by 
repeated application of the formula ai+1 = ai + di :

The spacing of [36, 48] → [48, 50] is 12/2; 12, 2.

The spacing of [1,2,4] → [3,4,7] is 1,2/1,3;2,2,3.

The spacing of [100, 101, 102, 103, 104] → [103, 104, 105, 106, 107] is 1, 1, 1, 1/1, 1, 1, 1; 
3, 3, 3, 3, 3. 

The spacing of [3,6,7] → [1,3,7] is 3,1/2,4;−2,−3,0.

are strictly decreasing, since the notation in (1.1) requires that bi+1 > bi and ai+1 > ai. It follows from
(2.3) that τ(ai+1), τ

2(ai+1), . . . , τ
k−1(ai+1) are strictly between ai and ai+1 since ai = bi+1, hence not in the

domain of σ. Furthermore, τ(ai) = τ(bi+1) = τ(τk(ai+1)) = τk(τ(ai+1)) = σ(τ(ai+1)), which implies that
τ(ai+1) is in the domain of σ, a contradiction. If ai+1 = bi, then we reach a similar contradiction by using
(2.2). �

Example 2.7. Using Lemma 2.6, we can see immediately that none of the following elements have kth roots
for any k ≥ 2 :

[2, 10] → [10, 16],

[1, 2, 10, 26] → [1, 10, 16, 26],

[51, 52, 53, 56, 58, 59, 60] → [51, 52, 53, 54, 56, 59, 60]

and

[56, 58] → [54, 56].

Definition 2.8. For elements of POI(n) of rank m, say σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm], we will define
the spacing of σ to be d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm where di = ai+1 − ai, rj = bj+1 − bj ,
and c� = b� − a� with i, j ∈ {1, . . . ,m− 1} and � ∈ {1, . . . ,m}.

Remark. The reader has likely noticed that relationships exist among the parameters ai, bi, ci, di, and ri.
With Definition 2.8, we have following equations, the first of which results by repeated application of the
formula ai+1 = ai + di :

ai+k = ai +
i+k−1∑
j=i

dj , for k ≥ 0 (2.4)

bi+1 = a1 + c1 +
i∑

j=1

rj = ai+1 + ci+1 = bi + ri = ai + ri + ci, (2.5)

and

c�+1 = c1 +

�∑
j=1

(rj − dj) = c� + r� − d�, (2.6)

where i, � ∈ {1, . . . ,m− 1}.

Example 2.9. Here are some examples to illustrate Definition 2.8.

(a) The spacing of [36, 48] → [48, 50] is 12/2; 12, 2.

(b) The spacing of [1, 2, 4] → [3, 4, 7] is 1, 2/1, 3; 2, 2, 3.

(c) The spacing of [100, 101, 102, 103, 104] → [103, 104, 105, 106, 107] is 1, 1, 1, 1/1, 1, 1, 1; 3, 3, 3, 3, 3.

(d) The spacing of [3, 6, 7] → [1, 3, 7] is 3, 1/2, 4;−2,−3, 0.

We can rephrase Lemma 2.6 using the spacing notation of Definition 2.8 as follows:

5

are strictly decreasing, since the notation in (1.1) requires that bi+1 > bi and ai+1 > ai. It follows from
(2.3) that τ(ai+1), τ

2(ai+1), . . . , τ
k−1(ai+1) are strictly between ai and ai+1 since ai = bi+1, hence not in the

domain of σ. Furthermore, τ(ai) = τ(bi+1) = τ(τk(ai+1)) = τk(τ(ai+1)) = σ(τ(ai+1)), which implies that
τ(ai+1) is in the domain of σ, a contradiction. If ai+1 = bi, then we reach a similar contradiction by using
(2.2). �

Example 2.7. Using Lemma 2.6, we can see immediately that none of the following elements have kth roots
for any k ≥ 2 :

[2, 10] → [10, 16],

[1, 2, 10, 26] → [1, 10, 16, 26],

[51, 52, 53, 56, 58, 59, 60] → [51, 52, 53, 54, 56, 59, 60]

and

[56, 58] → [54, 56].

Definition 2.8. For elements of POI(n) of rank m, say σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm], we will define
the spacing of σ to be d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm where di = ai+1 − ai, rj = bj+1 − bj ,
and c� = b� − a� with i, j ∈ {1, . . . ,m− 1} and � ∈ {1, . . . ,m}.

Remark. The reader has likely noticed that relationships exist among the parameters ai, bi, ci, di, and ri.
With Definition 2.8, we have following equations, the first of which results by repeated application of the
formula ai+1 = ai + di :

ai+k = ai +
i+k−1∑
j=i

dj , for k ≥ 0 (2.4)

bi+1 = a1 + c1 +
i∑

j=1

rj = ai+1 + ci+1 = bi + ri = ai + ri + ci, (2.5)

and

c�+1 = c1 +

�∑
j=1

(rj − dj) = c� + r� − d�, (2.6)

where i, � ∈ {1, . . . ,m− 1}.

Example 2.9. Here are some examples to illustrate Definition 2.8.

(a) The spacing of [36, 48] → [48, 50] is 12/2; 12, 2.

(b) The spacing of [1, 2, 4] → [3, 4, 7] is 1, 2/1, 3; 2, 2, 3.

(c) The spacing of [100, 101, 102, 103, 104] → [103, 104, 105, 106, 107] is 1, 1, 1, 1/1, 1, 1, 1; 3, 3, 3, 3, 3.

(d) The spacing of [3, 6, 7] → [1, 3, 7] is 3, 1/2, 4;−2,−3, 0.

We can rephrase Lemma 2.6 using the spacing notation of Definition 2.8 as follows:
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
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x such that τ(ai) = ai + x. It follows that
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
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di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
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In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
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which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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(a)

(b)

(c)

(d)

If di = −ci+1, then, by Definition 2.8,

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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(2.4)

(2.5)

(2.6)
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a contradiction since            is forced to be an integer strictly between consecutive integers 
ai+1 + 2 and ai+1 + 3.

If x < di, then since    is order-preserving and by using (2.9), we have

Lemma 2.12. If                   has rank     = m and a spacing with di+1 = ri = 1 and ci+1 = 3 
for some                              then    does not have a square root in POI(n).

In either case, Lemma 2.10 can be applied to conclude that     does not have a kth root in POI(n).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Let us now consider several cases for the value of x.

Using ri  = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1 + 2 > ai and bi+1 = 
ai+1 + 3 > ai+1, which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, 
there exists a positive integer x such that

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth 
roots since d1  = c1 = 12 for element (a), and d1  = −c2 = 3 for element(d).

Proof Suppose                                                                              By Definition 2.8, 
we have

If ai+1  = bi, then, by Definition 2.8,

In either of these cases, we can apply Lemma 2.6 to conclude at once that    does not have a 
kth root in POI(n).

Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1  = bi. If ai = bi+1, 
then, by Definition 2.8,

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,

6

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,

6

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,

6

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,

6

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,

6

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,

6

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,

6

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,

6

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Remark. Let τ ∈ POI(n) and c be in the domain of τ. Then, since τ is order-preserving, observe that the
sequence

{c, τ(c), τ2(c), . . . , τk(c), . . .} (2.1)

is either constant, strictly increasing, or strictly decreasing. In the first case, the constant sequence carries
on in an infinite sequence, whereas in the latter two situations, the number of defined terms of the sequence
is necessarily finite.

Example 2.1. Let τ =

(
1 2 3 4 5 6
− 1 2 4 6 −

)
∈ POI(6). Then for c = 3, the sequence (2.1) is strictly

decreasing, for c = 4 it is constant, and for c = 5 it is strictly increasing.

Definition 2.2. Let σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). Then, σ−1 = [b1, b2, . . . , bm] →
[a1, a2, . . . , am] is an inverse of σ. Note that (σ−1)−1 = σ, and that

σ ◦ σ−1 = 〈identity on [b1, b2, . . . , bm]〉

and

σ−1 ◦ σ = 〈identity on [a1, a2, . . . , am]〉.

The next lemma is a direct consequence of Definition 2.2.

Lemma 2.3. Let k ≥ 2 and σ ∈ POI(n). Then, σ has a kth root in POI(n) if and only if σ−1 has a kth

root POI(n).

Proof By symmetry it suffices to prove the forward direction. Suppose that σ has a kth root in POI(n), say
τ. That is, τk = σ. Now it is easy to see that (τ−1)k = (τk)−1 = σ−1, which proves that σ−1 has a kth root
in POI(n). �

Lemma 2.4. Let k ≥ 2 and σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). If there exists an i such that
1 ≤ i ≤ m and 0 < |ai − bi| < k, then σ does not have a kth root in POI(n).

Proof By way of contradiction, suppose that σ has a kth root in POI(n), say τ , and that there exists an i
with 1 ≤ i ≤ m such that 0 < |ai−bi| < k. If ai < bi, then the sequence (2.1) for c = ai is strictly increasing.
This implies that bi − ai ≥ k since for each j ≥ 0, τ j+1(ai) − τ j(ai) ≥ 1. Thus, we have a contradiction. If
ai > bi, we obtain a similar contradiction. �

Example 2.5. The element [1, 4, 6, 7] → [3, 5, 9, 10] does not have a square root in POI(10), and [3, 5, 6,
7, 8, 9, 10] → [103, 104, 106, 107, 108, 109, 110] does not have a 100th root in POI(110) by Lemma 2.4.

Lemma 2.6. Let k ≥ 2 and σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). If ai = bi+1 or ai+1 = bi for
some 1 ≤ i ≤ m− 1, then σ does not have a kth root in POI(n).

Proof By way of contradiction, suppose σ = τk for some τ ∈ POI(n). This implies that for each j ∈
{1, . . . ,m} we have τk(aj) = bj . Fix i ∈ {1, . . . ,m− 1}. If ai = bi+1, then the sequences

{ai, τ(ai), τ2(ai), . . . , τk−1(ai), bi} (2.2)

and

{ai+1, τ(ai+1), τ
2(ai+1), . . . , τ

k−1(ai+1), bi+1} (2.3)

4

(2.7)

(2.8)

(2.9)
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If ci = 2, then x = 1 since                                            . It follows that ai+1 = ai+1 = ai + x. 
Since

Proof Suppose there exists                   such that              Since ci ≥ 2 > 0, ci+2 > 0, and 
bi+1 = ai+1 + ci+1 = ai+1 + ci + ri − di ≥ ai+1 + ri +1 > ai+1 by (2.5) and (2.6), we have that 
the sequences (2.1) for                           are strictly increasing. This implies that there exist 
positive integer x such that

Lemma 2.14. If                 has rank      = m and spacing such that di = ri+1 = 1, di+1 + 
1 > ci > 0, ci             and ci + 2 > 0 for some                             then    does not have a 
square root in POI(n).

The element [1, 2, 3] → [4, 5, 7] has the spacing 1,1/1,2;3,3,4. Since d2 = r1 = 1 and 
c2 = 3, by Lemma 2.12, [1,2,3] → [4,5,7] does not have a square root in POI(n) for n ≥ 7.

The element    = [1, 6, 11, 12, 17] → [3, 4, 7, 9, 10] has the spacing 5,5,1,5/1,3,2,1;2,-2,-4,-
3,-7. By switching the domain and the range of this element, we obtain    −1 = [3, 4, 7, 9, 
10] → [1, 6, 11, 12, 17], which has spacing 1,3,2,1/5,5,1,5;-2,2,4,3,7. Since d4 = r3 = 1 and 
c4 = 3, by Lemma 2.12,       does not have a square root in POI(n) for n ≥ 17. Hence,    
does not have a square root in POI(n) for n ≥ 17 by Lemma 2.3.

Example 2.13. Let us give some examples to illustrate the use of Lemma 2.12.

Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,
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Lemma 2.10. Let k ≥ 2 and the spacing of σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n) be
d1, d2, . . . , dm−1/r1, r2, . . . , rm−1; c1, c2, . . . , cm. If di = ci or di = −ci+1 for some i ∈ {1, 2, . . . ,m− 1}, then
σ does not have a kth root in POI(n).

Proof of equivalence of Lemmas 2.6 and 2.10: Assume that Lemma 2.6 holds and suppose that di = ci
or di = −ci+1 for some i ∈ {1, 2, . . . , m− 1}. If di = ci, then, by Definition 2.8,

bi = ai + ci = ai + di = ai+1.

If di = −ci+1, then, by Definition 2.8,

bi+1 = ai+1 + ci+1 = (ai + di)− di = ai.

In either of these cases, we can apply Lemma 2.6 to conclude at once that σ does not have a kth root in
POI(n).
Conversely, assume that Lemma 2.10 holds and suppose ai = bi+1 or ai+1 = bi. If ai = bi+1, then, by
Definition 2.8,

di = ai+1 − ai = ai+1 − bi+1 = −ci+1.

If ai+1 = bi, then, by Definition 2.8,
di = bi − ai = ci.

In either case, Lemma 2.10 can be applied to conclude that σ does not have a kth root in POI(n). �

Example 2.11. By Lemma 2.10, the elements (a) and (d) from Example 2.9 do not have kth roots since
d1 = c1 = 12 for element (a), and d1 = −c2 = 3 for element (d).

The next two lemmas will only consider classifying elements with a square root, i.e., when k = 2.

Lemma 2.12. If σ ∈ POI(n), has rank(σ) = m and a spacing with di+1 = ri = 1 and ci+1 = 3 for some
i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose τ is a square root of σ, i.e., τ2 = σ for some τ ∈ POI(n). By Definition 2.8, we have

bi = ai+1 + ci+1 − ri (2.7)

and

bi+1 = ai+1 + ci+1. (2.8)

Using ri = 1 and ci+1 = 3, it follows from (2.7) and (2.8) that bi = ai+1+2 > ai and bi+1 = ai+1+3 > ai+1,
which implies that (2.1) is strictly increasing, for c = ai and c = ai+1. Thus, there exists a positive integer
x such that τ(ai) = ai + x. It follows that

τ(ai + x) = τ2(ai) = σ(ai) = bi = ai+1 + 2. (2.9)

Let us now consider several cases for the value of x.
If x < di, then since τ is order-preserving and by using (2.9), we have

ai+1 + 2 = τ(ai + x) < τ(ai + di) = τ(ai+1) < τ2(ai+1) = bi+1 = ai+1 + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+1 + 2 and
ai+1 + 3.
If x = di, then by using (2.9) and the fact that di+1 = 1,

ai+1 + 2 = τ(ai + x) = τ(ai+1) < τ(ai+2) = τ(ai+1 + di+1) < τ(ai+1 + 2) = τ2(ai+1) = bi+1 = ai+1 + 3,

6a contradiction since τ(ai+1 + 1) is an integer strictly between the two consecutive integers ai+1 + 2 and
ai+1 + 3.
Finally, if x > di, then by using (2.9) once more,

ai+1 = ai + di < ai + x = τ(ai) < τ(ai+1) < τ(ai + x) = ai+1 + 2.

This chain of strict inequalities is a contradiction since the right-most term is only greater than the left-most
term by 2, each of the terms in the chain must be an integer, and the chain contains four distinct values. �

Example 2.13. Let us give some examples to illustrate the use of Lemma 2.12.

(a) The element [1, 2, 3] → [4, 5, 7] has the spacing 1,1/1,2;3,3,4. Since d2 = r1 = 1 and c2 = 3, by Lemma
2.12, [1, 2, 3] → [4, 5, 7] does not have a square root in POI(n) for n ≥ 7.

(b) The element σ = [1, 6, 11, 12, 17] → [3, 4, 7, 9, 10] has the spacing 5,5,1,5/1,3,2,1;2,-2,-4,-3,-7. By switch-
ing the domain and the range of this element, we obtain σ−1 = [3, 4, 7, 9, 10] → [1, 6, 11, 12, 17], which
has spacing 1,3,2,1/5,5,1,5;-2,2,4,3,7. Since d4 = r3 = 1 and c4 = 3, by Lemma 2.12, σ−1 does not
have a square root in POI(n) for n ≥ 17. Hence, σ does not have a square root in POI(n) for n ≥ 17
by Lemma 2.3.

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does not apply.
Furthermore, there does not exist 1 ≤ i ≤ 4 such that ai = bi+1 or ai+1 = bi for either element. Thus, Lemma
2.6 does not apply, and, equivalently, neither does Lemma 2.10. Therefore, Example 2.13 demonstrates the
necessity of having Lemma 2.12 to help achieve our goal of classifying the elements of POI(n) with square
roots.

Lemma 2.14. If σ ∈ POI(n) has rank(σ) = m and spacing such that di = ri+1 = 1, di+1+1 > ci > 0, ci ∈
{2, 3} and ci+2 > 0 for some i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose there exists τ ∈ POI(n) such that τ2 = σ. Since ci ≥ 2 > 0, ci+2 > 0, and bi+1 =
ai+1 + ci+1 = ai+1 + ci + ri − di ≥ ai+1 + ri + 1 > ai+1 by (2.5) and (2.6), we have that the sequences
(2.1) for c ∈ {ai, ai+1, ai+2} are strictly increasing. This implies that there exist positive integer x such that
τ(ai) = ai + x.
If ci = 2, then x = 1 since ai < τ(ai) < τ2(ai) = bi = ai + 2. It follows that ai+1 = ai + 1 = ai + x. Since

τ(ai+1) = τ(ai + x) = τ2(ai) = σ(ai) = bi = ai + ci = ai + 2,

it follows that ai +2 ∈ Domain(τ). Thus, since ai+2 = ai + di+1 + di = ai + di+1 +1 by applying (2.4) with
k = 2,

bi+1 = τ2(ai+1) = τ(ai + 2) < τ(ai + di+1 + 1) = τ(ai+2) < τ2(ai+2) = bi+2 = bi+1 + 1,

a contradiction since τ(ai+2) is forced to be an integer strictly between consecutive integers bi+1 and bi+1+1.
If ci = 3, then x = 2 since we will reach a similar contradiction as above if x = 1. This implies that
τ(ai) = ai + 2 and τ(ai + 2) = τ2(ai) = bi = ai + ci = ai + 3. It follows that

ai + 2 = τ(ai) < τ(ai+1) < τ(ai + 2) = ai + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+2 and ai+3.
�

Example 2.15. Let us give some examples to illustrate the use of Lemma 2.14.

(a) The element [1, 2, 5] → [4, 6, 7] has the spacing 1,3/2,1;3,4,2. Since d1 = r2 = 1 and c1 = 3, by Lemma
2.14, [1, 2, 5] → [4, 6, 7] does not have a square root in POI(n) for n ≥ 7.
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a contradiction since τ(ai+1 + 1) is an integer strictly between the two consecutive integers ai+1 + 2 and
ai+1 + 3.
Finally, if x > di, then by using (2.9) once more,

ai+1 = ai + di < ai + x = τ(ai) < τ(ai+1) < τ(ai + x) = ai+1 + 2.

This chain of strict inequalities is a contradiction since the right-most term is only greater than the left-most
term by 2, each of the terms in the chain must be an integer, and the chain contains four distinct values. �

Example 2.13. Let us give some examples to illustrate the use of Lemma 2.12.

(a) The element [1, 2, 3] → [4, 5, 7] has the spacing 1,1/1,2;3,3,4. Since d2 = r1 = 1 and c2 = 3, by Lemma
2.12, [1, 2, 3] → [4, 5, 7] does not have a square root in POI(n) for n ≥ 7.

(b) The element σ = [1, 6, 11, 12, 17] → [3, 4, 7, 9, 10] has the spacing 5,5,1,5/1,3,2,1;2,-2,-4,-3,-7. By switch-
ing the domain and the range of this element, we obtain σ−1 = [3, 4, 7, 9, 10] → [1, 6, 11, 12, 17], which
has spacing 1,3,2,1/5,5,1,5;-2,2,4,3,7. Since d4 = r3 = 1 and c4 = 3, by Lemma 2.12, σ−1 does not
have a square root in POI(n) for n ≥ 17. Hence, σ does not have a square root in POI(n) for n ≥ 17
by Lemma 2.3.

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does not apply.
Furthermore, there does not exist 1 ≤ i ≤ 4 such that ai = bi+1 or ai+1 = bi for either element. Thus, Lemma
2.6 does not apply, and, equivalently, neither does Lemma 2.10. Therefore, Example 2.13 demonstrates the
necessity of having Lemma 2.12 to help achieve our goal of classifying the elements of POI(n) with square
roots.

Lemma 2.14. If σ ∈ POI(n) has rank(σ) = m and spacing such that di = ri+1 = 1, di+1+1 > ci > 0, ci ∈
{2, 3} and ci+2 > 0 for some i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose there exists τ ∈ POI(n) such that τ2 = σ. Since ci ≥ 2 > 0, ci+2 > 0, and bi+1 =
ai+1 + ci+1 = ai+1 + ci + ri − di ≥ ai+1 + ri + 1 > ai+1 by (2.5) and (2.6), we have that the sequences
(2.1) for c ∈ {ai, ai+1, ai+2} are strictly increasing. This implies that there exist positive integer x such that
τ(ai) = ai + x.
If ci = 2, then x = 1 since ai < τ(ai) < τ2(ai) = bi = ai + 2. It follows that ai+1 = ai + 1 = ai + x. Since
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has spacing 1,3,2,1/5,5,1,5;-2,2,4,3,7. Since d4 = r3 = 1 and c4 = 3, by Lemma 2.12, σ−1 does not
have a square root in POI(n) for n ≥ 17. Hence, σ does not have a square root in POI(n) for n ≥ 17
by Lemma 2.3.

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does not apply.
Furthermore, there does not exist 1 ≤ i ≤ 4 such that ai = bi+1 or ai+1 = bi for either element. Thus, Lemma
2.6 does not apply, and, equivalently, neither does Lemma 2.10. Therefore, Example 2.13 demonstrates the
necessity of having Lemma 2.12 to help achieve our goal of classifying the elements of POI(n) with square
roots.

Lemma 2.14. If σ ∈ POI(n) has rank(σ) = m and spacing such that di = ri+1 = 1, di+1+1 > ci > 0, ci ∈
{2, 3} and ci+2 > 0 for some i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose there exists τ ∈ POI(n) such that τ2 = σ. Since ci ≥ 2 > 0, ci+2 > 0, and bi+1 =
ai+1 + ci+1 = ai+1 + ci + ri − di ≥ ai+1 + ri + 1 > ai+1 by (2.5) and (2.6), we have that the sequences
(2.1) for c ∈ {ai, ai+1, ai+2} are strictly increasing. This implies that there exist positive integer x such that
τ(ai) = ai + x.
If ci = 2, then x = 1 since ai < τ(ai) < τ2(ai) = bi = ai + 2. It follows that ai+1 = ai + 1 = ai + x. Since

τ(ai+1) = τ(ai + x) = τ2(ai) = σ(ai) = bi = ai + ci = ai + 2,

it follows that ai +2 ∈ Domain(τ). Thus, since ai+2 = ai + di+1 + di = ai + di+1 +1 by applying (2.4) with
k = 2,

bi+1 = τ2(ai+1) = τ(ai + 2) < τ(ai + di+1 + 1) = τ(ai+2) < τ2(ai+2) = bi+2 = bi+1 + 1,

a contradiction since τ(ai+2) is forced to be an integer strictly between consecutive integers bi+1 and bi+1+1.
If ci = 3, then x = 2 since we will reach a similar contradiction as above if x = 1. This implies that
τ(ai) = ai + 2 and τ(ai + 2) = τ2(ai) = bi = ai + ci = ai + 3. It follows that

ai + 2 = τ(ai) < τ(ai+1) < τ(ai + 2) = ai + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+2 and ai+3.
�

Example 2.15. Let us give some examples to illustrate the use of Lemma 2.14.

(a) The element [1, 2, 5] → [4, 6, 7] has the spacing 1,3/2,1;3,4,2. Since d1 = r2 = 1 and c1 = 3, by Lemma
2.14, [1, 2, 5] → [4, 6, 7] does not have a square root in POI(n) for n ≥ 7.
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a contradiction since τ(ai+1 + 1) is an integer strictly between the two consecutive integers ai+1 + 2 and
ai+1 + 3.
Finally, if x > di, then by using (2.9) once more,

ai+1 = ai + di < ai + x = τ(ai) < τ(ai+1) < τ(ai + x) = ai+1 + 2.

This chain of strict inequalities is a contradiction since the right-most term is only greater than the left-most
term by 2, each of the terms in the chain must be an integer, and the chain contains four distinct values. �

Example 2.13. Let us give some examples to illustrate the use of Lemma 2.12.

(a) The element [1, 2, 3] → [4, 5, 7] has the spacing 1,1/1,2;3,3,4. Since d2 = r1 = 1 and c2 = 3, by Lemma
2.12, [1, 2, 3] → [4, 5, 7] does not have a square root in POI(n) for n ≥ 7.

(b) The element σ = [1, 6, 11, 12, 17] → [3, 4, 7, 9, 10] has the spacing 5,5,1,5/1,3,2,1;2,-2,-4,-3,-7. By switch-
ing the domain and the range of this element, we obtain σ−1 = [3, 4, 7, 9, 10] → [1, 6, 11, 12, 17], which
has spacing 1,3,2,1/5,5,1,5;-2,2,4,3,7. Since d4 = r3 = 1 and c4 = 3, by Lemma 2.12, σ−1 does not
have a square root in POI(n) for n ≥ 17. Hence, σ does not have a square root in POI(n) for n ≥ 17
by Lemma 2.3.

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does not apply.
Furthermore, there does not exist 1 ≤ i ≤ 4 such that ai = bi+1 or ai+1 = bi for either element. Thus, Lemma
2.6 does not apply, and, equivalently, neither does Lemma 2.10. Therefore, Example 2.13 demonstrates the
necessity of having Lemma 2.12 to help achieve our goal of classifying the elements of POI(n) with square
roots.

Lemma 2.14. If σ ∈ POI(n) has rank(σ) = m and spacing such that di = ri+1 = 1, di+1+1 > ci > 0, ci ∈
{2, 3} and ci+2 > 0 for some i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose there exists τ ∈ POI(n) such that τ2 = σ. Since ci ≥ 2 > 0, ci+2 > 0, and bi+1 =
ai+1 + ci+1 = ai+1 + ci + ri − di ≥ ai+1 + ri + 1 > ai+1 by (2.5) and (2.6), we have that the sequences
(2.1) for c ∈ {ai, ai+1, ai+2} are strictly increasing. This implies that there exist positive integer x such that
τ(ai) = ai + x.
If ci = 2, then x = 1 since ai < τ(ai) < τ2(ai) = bi = ai + 2. It follows that ai+1 = ai + 1 = ai + x. Since

τ(ai+1) = τ(ai + x) = τ2(ai) = σ(ai) = bi = ai + ci = ai + 2,

it follows that ai +2 ∈ Domain(τ). Thus, since ai+2 = ai + di+1 + di = ai + di+1 +1 by applying (2.4) with
k = 2,

bi+1 = τ2(ai+1) = τ(ai + 2) < τ(ai + di+1 + 1) = τ(ai+2) < τ2(ai+2) = bi+2 = bi+1 + 1,

a contradiction since τ(ai+2) is forced to be an integer strictly between consecutive integers bi+1 and bi+1+1.
If ci = 3, then x = 2 since we will reach a similar contradiction as above if x = 1. This implies that
τ(ai) = ai + 2 and τ(ai + 2) = τ2(ai) = bi = ai + ci = ai + 3. It follows that

ai + 2 = τ(ai) < τ(ai+1) < τ(ai + 2) = ai + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+2 and ai+3.
�

Example 2.15. Let us give some examples to illustrate the use of Lemma 2.14.

(a) The element [1, 2, 5] → [4, 6, 7] has the spacing 1,3/2,1;3,4,2. Since d1 = r2 = 1 and c1 = 3, by Lemma
2.14, [1, 2, 5] → [4, 6, 7] does not have a square root in POI(n) for n ≥ 7.
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a contradiction since τ(ai+1 + 1) is an integer strictly between the two consecutive integers ai+1 + 2 and
ai+1 + 3.
Finally, if x > di, then by using (2.9) once more,

ai+1 = ai + di < ai + x = τ(ai) < τ(ai+1) < τ(ai + x) = ai+1 + 2.

This chain of strict inequalities is a contradiction since the right-most term is only greater than the left-most
term by 2, each of the terms in the chain must be an integer, and the chain contains four distinct values. �

Example 2.13. Let us give some examples to illustrate the use of Lemma 2.12.

(a) The element [1, 2, 3] → [4, 5, 7] has the spacing 1,1/1,2;3,3,4. Since d2 = r1 = 1 and c2 = 3, by Lemma
2.12, [1, 2, 3] → [4, 5, 7] does not have a square root in POI(n) for n ≥ 7.

(b) The element σ = [1, 6, 11, 12, 17] → [3, 4, 7, 9, 10] has the spacing 5,5,1,5/1,3,2,1;2,-2,-4,-3,-7. By switch-
ing the domain and the range of this element, we obtain σ−1 = [3, 4, 7, 9, 10] → [1, 6, 11, 12, 17], which
has spacing 1,3,2,1/5,5,1,5;-2,2,4,3,7. Since d4 = r3 = 1 and c4 = 3, by Lemma 2.12, σ−1 does not
have a square root in POI(n) for n ≥ 17. Hence, σ does not have a square root in POI(n) for n ≥ 17
by Lemma 2.3.

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does not apply.
Furthermore, there does not exist 1 ≤ i ≤ 4 such that ai = bi+1 or ai+1 = bi for either element. Thus, Lemma
2.6 does not apply, and, equivalently, neither does Lemma 2.10. Therefore, Example 2.13 demonstrates the
necessity of having Lemma 2.12 to help achieve our goal of classifying the elements of POI(n) with square
roots.

Lemma 2.14. If σ ∈ POI(n) has rank(σ) = m and spacing such that di = ri+1 = 1, di+1+1 > ci > 0, ci ∈
{2, 3} and ci+2 > 0 for some i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose there exists τ ∈ POI(n) such that τ2 = σ. Since ci ≥ 2 > 0, ci+2 > 0, and bi+1 =
ai+1 + ci+1 = ai+1 + ci + ri − di ≥ ai+1 + ri + 1 > ai+1 by (2.5) and (2.6), we have that the sequences
(2.1) for c ∈ {ai, ai+1, ai+2} are strictly increasing. This implies that there exist positive integer x such that
τ(ai) = ai + x.
If ci = 2, then x = 1 since ai < τ(ai) < τ2(ai) = bi = ai + 2. It follows that ai+1 = ai + 1 = ai + x. Since

τ(ai+1) = τ(ai + x) = τ2(ai) = σ(ai) = bi = ai + ci = ai + 2,

it follows that ai +2 ∈ Domain(τ). Thus, since ai+2 = ai + di+1 + di = ai + di+1 +1 by applying (2.4) with
k = 2,

bi+1 = τ2(ai+1) = τ(ai + 2) < τ(ai + di+1 + 1) = τ(ai+2) < τ2(ai+2) = bi+2 = bi+1 + 1,

a contradiction since τ(ai+2) is forced to be an integer strictly between consecutive integers bi+1 and bi+1+1.
If ci = 3, then x = 2 since we will reach a similar contradiction as above if x = 1. This implies that
τ(ai) = ai + 2 and τ(ai + 2) = τ2(ai) = bi = ai + ci = ai + 3. It follows that

ai + 2 = τ(ai) < τ(ai+1) < τ(ai + 2) = ai + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+2 and ai+3.
�

Example 2.15. Let us give some examples to illustrate the use of Lemma 2.14.

(a) The element [1, 2, 5] → [4, 6, 7] has the spacing 1,3/2,1;3,4,2. Since d1 = r2 = 1 and c1 = 3, by Lemma
2.14, [1, 2, 5] → [4, 6, 7] does not have a square root in POI(n) for n ≥ 7.
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a contradiction since τ(ai+1 + 1) is an integer strictly between the two consecutive integers ai+1 + 2 and
ai+1 + 3.
Finally, if x > di, then by using (2.9) once more,

ai+1 = ai + di < ai + x = τ(ai) < τ(ai+1) < τ(ai + x) = ai+1 + 2.

This chain of strict inequalities is a contradiction since the right-most term is only greater than the left-most
term by 2, each of the terms in the chain must be an integer, and the chain contains four distinct values. �

Example 2.13. Let us give some examples to illustrate the use of Lemma 2.12.

(a) The element [1, 2, 3] → [4, 5, 7] has the spacing 1,1/1,2;3,3,4. Since d2 = r1 = 1 and c2 = 3, by Lemma
2.12, [1, 2, 3] → [4, 5, 7] does not have a square root in POI(n) for n ≥ 7.

(b) The element σ = [1, 6, 11, 12, 17] → [3, 4, 7, 9, 10] has the spacing 5,5,1,5/1,3,2,1;2,-2,-4,-3,-7. By switch-
ing the domain and the range of this element, we obtain σ−1 = [3, 4, 7, 9, 10] → [1, 6, 11, 12, 17], which
has spacing 1,3,2,1/5,5,1,5;-2,2,4,3,7. Since d4 = r3 = 1 and c4 = 3, by Lemma 2.12, σ−1 does not
have a square root in POI(n) for n ≥ 17. Hence, σ does not have a square root in POI(n) for n ≥ 17
by Lemma 2.3.

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does not apply.
Furthermore, there does not exist 1 ≤ i ≤ 4 such that ai = bi+1 or ai+1 = bi for either element. Thus, Lemma
2.6 does not apply, and, equivalently, neither does Lemma 2.10. Therefore, Example 2.13 demonstrates the
necessity of having Lemma 2.12 to help achieve our goal of classifying the elements of POI(n) with square
roots.

Lemma 2.14. If σ ∈ POI(n) has rank(σ) = m and spacing such that di = ri+1 = 1, di+1+1 > ci > 0, ci ∈
{2, 3} and ci+2 > 0 for some i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose there exists τ ∈ POI(n) such that τ2 = σ. Since ci ≥ 2 > 0, ci+2 > 0, and bi+1 =
ai+1 + ci+1 = ai+1 + ci + ri − di ≥ ai+1 + ri + 1 > ai+1 by (2.5) and (2.6), we have that the sequences
(2.1) for c ∈ {ai, ai+1, ai+2} are strictly increasing. This implies that there exist positive integer x such that
τ(ai) = ai + x.
If ci = 2, then x = 1 since ai < τ(ai) < τ2(ai) = bi = ai + 2. It follows that ai+1 = ai + 1 = ai + x. Since

τ(ai+1) = τ(ai + x) = τ2(ai) = σ(ai) = bi = ai + ci = ai + 2,

it follows that ai +2 ∈ Domain(τ). Thus, since ai+2 = ai + di+1 + di = ai + di+1 +1 by applying (2.4) with
k = 2,

bi+1 = τ2(ai+1) = τ(ai + 2) < τ(ai + di+1 + 1) = τ(ai+2) < τ2(ai+2) = bi+2 = bi+1 + 1,

a contradiction since τ(ai+2) is forced to be an integer strictly between consecutive integers bi+1 and bi+1+1.
If ci = 3, then x = 2 since we will reach a similar contradiction as above if x = 1. This implies that
τ(ai) = ai + 2 and τ(ai + 2) = τ2(ai) = bi = ai + ci = ai + 3. It follows that

ai + 2 = τ(ai) < τ(ai+1) < τ(ai + 2) = ai + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+2 and ai+3.
�

Example 2.15. Let us give some examples to illustrate the use of Lemma 2.14.

(a) The element [1, 2, 5] → [4, 6, 7] has the spacing 1,3/2,1;3,4,2. Since d1 = r2 = 1 and c1 = 3, by Lemma
2.14, [1, 2, 5] → [4, 6, 7] does not have a square root in POI(n) for n ≥ 7.
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If x = di, then by using (2.9) and the fact that ai+1 = 1,

a contradiction since                 is an integer strictly between the two consecutive integers 
ai+1 + 2 and ai+1 + 3.

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does 
not apply. Furthermore, there does not exist 1 ≤ i ≤ 4 such that ai = bi+1 or ai+1 = bi for 
either element. Thus, Lemma 2.6 does not apply, and, equivalently, neither does Lemma 2.10. 
Therefore, Example 2.13 demonstrates the necessity of having Lemma 2.12 to help achieve our 
goal of classifying the elements of POI(n) with square roots.

Finally, if x = di, then by using (2.9) once more,

This chain of strict inequalities is a contradiction since the right-most term is only greater 
than the left-most term by 2, each of the terms in the chain must be an integer, and the chain 
contains four distinct values. 

(a)

(b)

Remark. Let τ ∈ POI(n) and c be in the domain of τ. Then, since τ is order-preserving, observe that the
sequence

{c, τ(c), τ2(c), . . . , τk(c), . . .} (2.1)

is either constant, strictly increasing, or strictly decreasing. In the first case, the constant sequence carries
on in an infinite sequence, whereas in the latter two situations, the number of defined terms of the sequence
is necessarily finite.

Example 2.1. Let τ =

(
1 2 3 4 5 6
− 1 2 4 6 −

)
∈ POI(6). Then for c = 3, the sequence (2.1) is strictly

decreasing, for c = 4 it is constant, and for c = 5 it is strictly increasing.

Definition 2.2. Let σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). Then, σ−1 = [b1, b2, . . . , bm] →
[a1, a2, . . . , am] is an inverse of σ. Note that (σ−1)−1 = σ, and that

σ ◦ σ−1 = 〈identity on [b1, b2, . . . , bm]〉

and

σ−1 ◦ σ = 〈identity on [a1, a2, . . . , am]〉.

The next lemma is a direct consequence of Definition 2.2.

Lemma 2.3. Let k ≥ 2 and σ ∈ POI(n). Then, σ has a kth root in POI(n) if and only if σ−1 has a kth

root POI(n).

Proof By symmetry it suffices to prove the forward direction. Suppose that σ has a kth root in POI(n), say
τ. That is, τk = σ. Now it is easy to see that (τ−1)k = (τk)−1 = σ−1, which proves that σ−1 has a kth root
in POI(n). �

Lemma 2.4. Let k ≥ 2 and σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). If there exists an i such that
1 ≤ i ≤ m and 0 < |ai − bi| < k, then σ does not have a kth root in POI(n).

Proof By way of contradiction, suppose that σ has a kth root in POI(n), say τ , and that there exists an i
with 1 ≤ i ≤ m such that 0 < |ai−bi| < k. If ai < bi, then the sequence (2.1) for c = ai is strictly increasing.
This implies that bi − ai ≥ k since for each j ≥ 0, τ j+1(ai) − τ j(ai) ≥ 1. Thus, we have a contradiction. If
ai > bi, we obtain a similar contradiction. �

Example 2.5. The element [1, 4, 6, 7] → [3, 5, 9, 10] does not have a square root in POI(10), and [3, 5, 6,
7, 8, 9, 10] → [103, 104, 106, 107, 108, 109, 110] does not have a 100th root in POI(110) by Lemma 2.4.

Lemma 2.6. Let k ≥ 2 and σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). If ai = bi+1 or ai+1 = bi for
some 1 ≤ i ≤ m− 1, then σ does not have a kth root in POI(n).

Proof By way of contradiction, suppose σ = τk for some τ ∈ POI(n). This implies that for each j ∈
{1, . . . ,m} we have τk(aj) = bj . Fix i ∈ {1, . . . ,m− 1}. If ai = bi+1, then the sequences

{ai, τ(ai), τ2(ai), . . . , τk−1(ai), bi} (2.2)

and

{ai+1, τ(ai+1), τ
2(ai+1), . . . , τ

k−1(ai+1), bi+1} (2.3)

4



130

it follows that                             Thus, since ai+2 = ai + di+1 + di = ai + di+1 + 1 by 
applying (2.4) with k = 2,

a contradiction since            is forced to be an integer strictly between consecutive integers bi+1 
and bi+1 +1. If ci = 3, then x = 2 since we will reach a similar contradiction as above if x = 1. 
This implies that

a contradiction since           is forced to be an integer strictly between consecutive integers 
ai +2 and ai +3.

Example 2.15. Let us give some examples to illustrate the use of Lemma 2.14.

In the final section, we turn our attention to presenting this main result.

The lemmas presented in Section 2 are sufficient to determine whether elements of POI(n) have 
a square root in POI(n) with n ≤ 7. As a result, we have the following:

Theorem 3.1. Let                 with n ≤ 7. Then    has a square root in POI(n) if and only if     
   fails to satisfy any of the hypotheses of Lemma 2.4, Lemma 2.6, Lemma 2.10, Lemma 2.12, 
and Lemma 2.14.

a contradiction since τ(ai+1 + 1) is an integer strictly between the two consecutive integers ai+1 + 2 and
ai+1 + 3.
Finally, if x > di, then by using (2.9) once more,

ai+1 = ai + di < ai + x = τ(ai) < τ(ai+1) < τ(ai + x) = ai+1 + 2.

This chain of strict inequalities is a contradiction since the right-most term is only greater than the left-most
term by 2, each of the terms in the chain must be an integer, and the chain contains four distinct values. �

Example 2.13. Let us give some examples to illustrate the use of Lemma 2.12.

(a) The element [1, 2, 3] → [4, 5, 7] has the spacing 1,1/1,2;3,3,4. Since d2 = r1 = 1 and c2 = 3, by Lemma
2.12, [1, 2, 3] → [4, 5, 7] does not have a square root in POI(n) for n ≥ 7.

(b) The element σ = [1, 6, 11, 12, 17] → [3, 4, 7, 9, 10] has the spacing 5,5,1,5/1,3,2,1;2,-2,-4,-3,-7. By switch-
ing the domain and the range of this element, we obtain σ−1 = [3, 4, 7, 9, 10] → [1, 6, 11, 12, 17], which
has spacing 1,3,2,1/5,5,1,5;-2,2,4,3,7. Since d4 = r3 = 1 and c4 = 3, by Lemma 2.12, σ−1 does not
have a square root in POI(n) for n ≥ 17. Hence, σ does not have a square root in POI(n) for n ≥ 17
by Lemma 2.3.

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does not apply.
Furthermore, there does not exist 1 ≤ i ≤ 4 such that ai = bi+1 or ai+1 = bi for either element. Thus, Lemma
2.6 does not apply, and, equivalently, neither does Lemma 2.10. Therefore, Example 2.13 demonstrates the
necessity of having Lemma 2.12 to help achieve our goal of classifying the elements of POI(n) with square
roots.

Lemma 2.14. If σ ∈ POI(n) has rank(σ) = m and spacing such that di = ri+1 = 1, di+1+1 > ci > 0, ci ∈
{2, 3} and ci+2 > 0 for some i ∈ {1, 2, . . . ,m− 2}, then σ does not have a square root in POI(n).

Proof Suppose there exists τ ∈ POI(n) such that τ2 = σ. Since ci ≥ 2 > 0, ci+2 > 0, and bi+1 =
ai+1 + ci+1 = ai+1 + ci + ri − di ≥ ai+1 + ri + 1 > ai+1 by (2.5) and (2.6), we have that the sequences
(2.1) for c ∈ {ai, ai+1, ai+2} are strictly increasing. This implies that there exist positive integer x such that
τ(ai) = ai + x.
If ci = 2, then x = 1 since ai < τ(ai) < τ2(ai) = bi = ai + 2. It follows that ai+1 = ai + 1 = ai + x. Since

τ(ai+1) = τ(ai + x) = τ2(ai) = σ(ai) = bi = ai + ci = ai + 2,

it follows that ai +2 ∈ Domain(τ). Thus, since ai+2 = ai + di+1 + di = ai + di+1 +1 by applying (2.4) with
k = 2,

bi+1 = τ2(ai+1) = τ(ai + 2) < τ(ai + di+1 + 1) = τ(ai+2) < τ2(ai+2) = bi+2 = bi+1 + 1,

a contradiction since τ(ai+2) is forced to be an integer strictly between consecutive integers bi+1 and bi+1+1.
If ci = 3, then x = 2 since we will reach a similar contradiction as above if x = 1. This implies that
τ(ai) = ai + 2 and τ(ai + 2) = τ2(ai) = bi = ai + ci = ai + 3. It follows that

ai + 2 = τ(ai) < τ(ai+1) < τ(ai + 2) = ai + 3,

a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+2 and ai+3.
�

Example 2.15. Let us give some examples to illustrate the use of Lemma 2.14.

(a) The element [1, 2, 5] → [4, 6, 7] has the spacing 1,3/2,1;3,4,2. Since d1 = r2 = 1 and c1 = 3, by Lemma
2.14, [1, 2, 5] → [4, 6, 7] does not have a square root in POI(n) for n ≥ 7.
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a contradiction since τ(ai+1 + 1) is an integer strictly between the two consecutive integers ai+1 + 2 and
ai+1 + 3.
Finally, if x > di, then by using (2.9) once more,

ai+1 = ai + di < ai + x = τ(ai) < τ(ai+1) < τ(ai + x) = ai+1 + 2.

This chain of strict inequalities is a contradiction since the right-most term is only greater than the left-most
term by 2, each of the terms in the chain must be an integer, and the chain contains four distinct values. �

Example 2.13. Let us give some examples to illustrate the use of Lemma 2.12.

(a) The element [1, 2, 3] → [4, 5, 7] has the spacing 1,1/1,2;3,3,4. Since d2 = r1 = 1 and c2 = 3, by Lemma
2.12, [1, 2, 3] → [4, 5, 7] does not have a square root in POI(n) for n ≥ 7.

(b) The element σ = [1, 6, 11, 12, 17] → [3, 4, 7, 9, 10] has the spacing 5,5,1,5/1,3,2,1;2,-2,-4,-3,-7. By switch-
ing the domain and the range of this element, we obtain σ−1 = [3, 4, 7, 9, 10] → [1, 6, 11, 12, 17], which
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by Lemma 2.3.

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does not apply.
Furthermore, there does not exist 1 ≤ i ≤ 4 such that ai = bi+1 or ai+1 = bi for either element. Thus, Lemma
2.6 does not apply, and, equivalently, neither does Lemma 2.10. Therefore, Example 2.13 demonstrates the
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The element [1, 2, 5] → [4, 6, 7] has the spacing 1,3/2,1;3,4,2. Since d1 = r2 = 1 and 
c1 = 3, by Lemma 2.14, [1,2,5] → [4,6,7] does not have a square root in POI(n) for n ≥ 7.

The element    = [4, 5, 9, 13, 14] → [1, 3, 7, 8, 12]  has the spacing 1,4,4,1/2,4,1,4;-3,-2,-
2,-5,-2. By switching the domain and the range of this element, we obtain    −1 = [1, 3, 7, 
8, 12] → [4, 5, 9, 13, 14], which has spacing 2,4,1,4/1,4,4,1;3,2,2,5,2. Since d3 = r4 = 1 and 
c3 = 2, by Lemma 2.14,       does not have a square root in POI(n) for n ≥ 17. Hence,    
does not have a square root in POI(n) for n ≥ 14 by Lemma 2.3.
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2.6 does not apply, and, equivalently, neither does Lemma 2.10. Therefore, Example 2.13 demonstrates the
necessity of having Lemma 2.12 to help achieve our goal of classifying the elements of POI(n) with square
roots.

Lemma 2.14. If σ ∈ POI(n) has rank(σ) = m and spacing such that di = ri+1 = 1, di+1+1 > ci > 0, ci ∈
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a contradiction since τ(ai+1) is forced to be an integer strictly between consecutive integers ai+2 and ai+3.
�

Example 2.15. Let us give some examples to illustrate the use of Lemma 2.14.

(a) The element [1, 2, 5] → [4, 6, 7] has the spacing 1,3/2,1;3,4,2. Since d1 = r2 = 1 and c1 = 3, by Lemma
2.14, [1, 2, 5] → [4, 6, 7] does not have a square root in POI(n) for n ≥ 7.

7

a contradiction since τ(ai+1 + 1) is an integer strictly between the two consecutive integers ai+1 + 2 and
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(a)

(b)

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does not 
apply. Furthermore, there does not exist an integer i with 0 < i < 5 such that ai = bi+1 or ai+1 
= bi for either element. Thus, Lemma 2.6 does not apply, and, equivalently, neither does Lemma 
2.10. Moreover, there does not exist an integer i with 0 < i < 4 such that di+1 = ri = 1 and ci+1 
= 3 for either element. Hence, Lemma 2.12 does not apply. These remarks illustrate that Lemma 
2.14 is an important result in the arsenal of results that facilitate our main result.

3. Main Theorem

(b) The element σ = [4, 5, 9, 13, 14] → [1, 3, 7, 8, 12] has the spacing 1,4,4,1/2,4,1,4;-3,-2,-2,-5,-2. By switch-
ing the domain and the range of this element, we obtain σ−1 = [1, 3, 7, 8, 12] → [4, 5, 9, 13, 14], which
has spacing 2,4,1,4/1,4,4,1;3,2,2,5,2. Since d3 = r4 = 1 and c3 = 2, by Lemma 2.14, σ−1 does not have
a square root. Hence, σ does not have a square root in POI(n) with n ≥ 14 by Lemma 2.3.

Note that for both of these examples, |ci| ≥ 2, for all i, which implies that Lemma 2.4 does not apply.
Furthermore, there does not exist an integer i with 0 < i < 5 such that ai = bi+1 or ai+1 = bi for either
element. Thus, Lemma 2.6 does not apply, and, equivalently, neither does Lemma 2.10. Moreover, there
does not exist an integer i with 0 < i < 4 such that di+1 = ri = 1 and ci+1 = 3 for either element. Hence,
Lemma 2.12 does not apply. These remarks illustrate that Lemma 2.14 is an important result in the arsenal
of results that facilitate our main result.

In the final section, we turn our attention to presenting this main result.

3 Main Theorem

The lemmas presented in Section 2 are sufficient to determine whether elements of POI(n) have a square
root in POI(n) with n ≤ 7 . As a result, we have the following:

Theorem 3.1. Let σ ∈ POI(n) with n ≤ 7. Then σ has a square root in POI(n) if and only if σ fails to
satisfy any of the hypotheses of Lemma 2.4, Lemma 2.6, Lemma 2.10, Lemma 2.12, and Lemma 2.14.

Proof Using GAP, an exhaustive analysis of the elements of POI(n) with n ≤ 7 verifies that each element
either possesses a square root or satisfies the hypothesis of one of the lemmas stated here. �

We suspect that, with further analysis, we can generalize Lemma 2.12 and Lemma 2.14. These results were
obtained through studying the 3,432 elements of POI(7). However, note that POI(8) has 12,870 elements.
Moreover, analysis of POI(8) is required to be able to conclude whether Theorem 3.1 is sufficient to determine
whether the elements of this significantly larger semigroup have square roots, perhaps instead POI(7) does
not present an extensive variety of “types” of elements in order to make such a claim.
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Remark. Let τ ∈ POI(n) and c be in the domain of τ. Then, since τ is order-preserving, observe that the
sequence

{c, τ(c), τ2(c), . . . , τk(c), . . .} (2.1)

is either constant, strictly increasing, or strictly decreasing. In the first case, the constant sequence carries
on in an infinite sequence, whereas in the latter two situations, the number of defined terms of the sequence
is necessarily finite.

Example 2.1. Let τ =

(
1 2 3 4 5 6
− 1 2 4 6 −

)
∈ POI(6). Then for c = 3, the sequence (2.1) is strictly

decreasing, for c = 4 it is constant, and for c = 5 it is strictly increasing.

Definition 2.2. Let σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). Then, σ−1 = [b1, b2, . . . , bm] →
[a1, a2, . . . , am] is an inverse of σ. Note that (σ−1)−1 = σ, and that

σ ◦ σ−1 = 〈identity on [b1, b2, . . . , bm]〉

and

σ−1 ◦ σ = 〈identity on [a1, a2, . . . , am]〉.

The next lemma is a direct consequence of Definition 2.2.

Lemma 2.3. Let k ≥ 2 and σ ∈ POI(n). Then, σ has a kth root in POI(n) if and only if σ−1 has a kth

root POI(n).

Proof By symmetry it suffices to prove the forward direction. Suppose that σ has a kth root in POI(n), say
τ. That is, τk = σ. Now it is easy to see that (τ−1)k = (τk)−1 = σ−1, which proves that σ−1 has a kth root
in POI(n). �

Lemma 2.4. Let k ≥ 2 and σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). If there exists an i such that
1 ≤ i ≤ m and 0 < |ai − bi| < k, then σ does not have a kth root in POI(n).

Proof By way of contradiction, suppose that σ has a kth root in POI(n), say τ , and that there exists an i
with 1 ≤ i ≤ m such that 0 < |ai−bi| < k. If ai < bi, then the sequence (2.1) for c = ai is strictly increasing.
This implies that bi − ai ≥ k since for each j ≥ 0, τ j+1(ai) − τ j(ai) ≥ 1. Thus, we have a contradiction. If
ai > bi, we obtain a similar contradiction. �

Example 2.5. The element [1, 4, 6, 7] → [3, 5, 9, 10] does not have a square root in POI(10), and [3, 5, 6,
7, 8, 9, 10] → [103, 104, 106, 107, 108, 109, 110] does not have a 100th root in POI(110) by Lemma 2.4.

Lemma 2.6. Let k ≥ 2 and σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). If ai = bi+1 or ai+1 = bi for
some 1 ≤ i ≤ m− 1, then σ does not have a kth root in POI(n).

Proof By way of contradiction, suppose σ = τk for some τ ∈ POI(n). This implies that for each j ∈
{1, . . . ,m} we have τk(aj) = bj . Fix i ∈ {1, . . . ,m− 1}. If ai = bi+1, then the sequences

{ai, τ(ai), τ2(ai), . . . , τk−1(ai), bi} (2.2)

and

{ai+1, τ(ai+1), τ
2(ai+1), . . . , τ

k−1(ai+1), bi+1} (2.3)

4
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Proof Using GAP, an exhaustive analysis of the elements of POI(n) with n ≤ 7 verifies that 
each element either possesses a square root or satisfies the hypothesis of one of the lemmas 
stated here.

We suspect that, with further analysis, we can generalize Lemma 2.12 and Lemma 2.14. These 
results were obtained through studying the 3,432 elements of POI(7). However, note that POI(8) 
has 12,870 elements. Moreover, analysis of POI(8) is required to be able to conclude whether 
Theorem 3.1 is sufficient to determine whether the elements of this significantly larger semigroup 
have square roots, perhaps instead POI(7) does not present an extensive variety of “types” of 
elements in order to make such a claim.
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Remark. Let τ ∈ POI(n) and c be in the domain of τ. Then, since τ is order-preserving, observe that the
sequence

{c, τ(c), τ2(c), . . . , τk(c), . . .} (2.1)

is either constant, strictly increasing, or strictly decreasing. In the first case, the constant sequence carries
on in an infinite sequence, whereas in the latter two situations, the number of defined terms of the sequence
is necessarily finite.

Example 2.1. Let τ =

(
1 2 3 4 5 6
− 1 2 4 6 −

)
∈ POI(6). Then for c = 3, the sequence (2.1) is strictly

decreasing, for c = 4 it is constant, and for c = 5 it is strictly increasing.

Definition 2.2. Let σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). Then, σ−1 = [b1, b2, . . . , bm] →
[a1, a2, . . . , am] is an inverse of σ. Note that (σ−1)−1 = σ, and that

σ ◦ σ−1 = 〈identity on [b1, b2, . . . , bm]〉

and

σ−1 ◦ σ = 〈identity on [a1, a2, . . . , am]〉.

The next lemma is a direct consequence of Definition 2.2.

Lemma 2.3. Let k ≥ 2 and σ ∈ POI(n). Then, σ has a kth root in POI(n) if and only if σ−1 has a kth

root POI(n).

Proof By symmetry it suffices to prove the forward direction. Suppose that σ has a kth root in POI(n), say
τ. That is, τk = σ. Now it is easy to see that (τ−1)k = (τk)−1 = σ−1, which proves that σ−1 has a kth root
in POI(n). �

Lemma 2.4. Let k ≥ 2 and σ = [a1, a2, . . . , am] → [b1, b2, . . . , bm] ∈ POI(n). If there exists an i such that
1 ≤ i ≤ m and 0 < |ai − bi| < k, then σ does not have a kth root in POI(n).
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1. Introduction

2. Background

2.1 Definitions

The biquaternionic projective point,      , has been shown to contain twistor structure [1]. 
However the details of the topology and its properties have not been fully explored. In this 
paper we address this issue by determining an explicit basis for the topology on       and 
analyzing some its elements.

For standard results on topological spaces, see [3].

Definition 1. A set X for which a topology     has been specified is called a topological space. 
The elements of    are called open subsets of X.

Definition 2. A map f : X → Y is said to be continuous if for each open set           the set 
f−1(V ) is open in X.

Definition 3. A map f : X → Y is said to be an open map if for each open set U of X, the 
set f(U) is open in Y.

Definition 4. Let X and Y be topological spaces; let p : X → Y be a surjective (i.e. onto) 
map. The map p is said to be a quotient map, provided a subset of V of Y is open in Y if 
and only if P−1(V ) is open in X.

Twistor theory is a subject of great interest in mathematical physics.       has been shown to 
contain a twistor structure due to to its topological properties [1]. Although this characteristic 
has been shown, the complete topology and its properties were unknown. Our goal is to 
determine a basis for the topology of       as well as explore stereographic projections and 
separation properties of this basis. In section II we outline the relevant background needed for 
the results in section III. We construct       and then find a basis for the topology in section 
III. We note that                  are isomorphic as algebras, which is the only structure needed 
this paper. Thus we represent biquaternions as 2 × 2 complex matrices throughout.
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Definition 1. A set X for which a topology ⌧ has been specified is called a topological space. The
elements of ⌧ are called open subsets of X.

Definition 2. A map f : X −! Y is said to be continuous if for each open set V ✓ Y the set f−1(V ) is
open in X.

Definition 3. A map f : X −! Y is said to be an open map if for each open set U of X, the set f(U) is
open in Y .

Definition 4. Let X and Y be topological spaces; let p : X −! Y be a surjective (i.e. onto) map. The map
p is said to be a quotient map, provided a subset of V of Y is open in Y if and only if P−1(V ) is open in
X.

Definition 5. If X is a space, A is a set, and p : X −! A is a surjective map, then there exists exactly one
topology ⌧ on A relative to which p is a quotient map; it is called the quotient topology induced by p.
The set A with the quotient topology is called a quotient space.

2.2 Theorems

With the previous definitions, we can prove the following general theorems

Theorem 2.1. Let f : (X, ⌧X) ! (Y, ⌧Y ) be invertible and continuous. Then f is open if and only if f

−1
is

continuous.
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The biquaternionic projective point, BP0, has been shown to contain twistor structure [1]. However
the details of the topology and its properties have not been fully explored. In this paper we address this
issue by determining an explicit basis for the topology on BP0 and analyzing some its elements.
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The set A with the quotient topology is called a quotient space.
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With the previous definitions, we can prove the following general theorems

Theorem 2.1. Let f : (X, ⌧X) ! (Y, ⌧Y ) be invertible and continuous. Then f is open if and only if f

−1
is

continuous.

1Proof. Let f be open. We need to show that f

−1 is continuous. To show that f

−1 is continuous, we need
to show that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Note that since f is invertible, (f−1)−1 = f. Thus, it is sufficient
to show that 8 U 2 ⌧X , f(U) 2 ⌧Y . Since f is open, we know by definition that 8 U 2 ⌧X , f(U) 2 ⌧Y .
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{f(B) | B 2 BX} (1)

is a basis for ⌧Y .

Proof. Let V 2 ⌧Y be arbitrary. Then f

−1(V ) 2 ⌧X since f is continuous. Since BX is a basis for ⌧X ,
9 {B↵ : B↵ 2 BX 8↵} ✓ BX such that f−1(V ) =

S

↵ B↵. Since f is a surjection, we have f(f−1(V )) = V , so

V = f(f−1(V )) = f(
[

↵

B↵) =
[

↵

f(B↵). (2)

A basis is a subset BY of ⌧Y in which all other open sets can be written as unions of the basis elements.
Since V 2 ⌧Y is arbitrary and V =

S

↵ f(B↵),

{f(B) | B 2 BX} (3)

is a basis for ⌧Y .

2.3 Stereographic Projection

Stereographic projection (see [2]) is a one-to-one correspondence between complex numbers and the points
on the surface of a punctured sphere. Looking at the sphere of radius 1

2 centered at (0, 0, 1
2 ) in Euclidean

(⇠, ⌘, ⇣) space, the plane ⇣ = 0 coincides with the complex plane C, and the ⇠ and ⌘ axes correspond to the x
and y axes, respectively. We associate each point (⇠, ⌘, ⇣) on the sphere with a complex number (x, y) where
the ray from the north pole of the sphere (0, 0, 1) through (⇠, ⌘, ⇣) intersects C. This correspondence is given
by

x =
⇠

1− ⇣

, y =
⌘

1− ⇣

, (4)

and

⇠ =
x

x

2 + y

2 + 1
, ⌘ =

y

x

2 + y

2 + 1
, ⇣ =

x

2 + y

2

x

2 + y

2 + 1
. (5)

3 The Projective Point BP0
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Abstract

The biquaternionic projective point, BP0, has been shown to contain twistor structure [1]. However
the details of the topology and its properties have not been fully explored. In this paper we address this
issue by determining an explicit basis for the topology on BP0 and analyzing some its elements.

1 Introduction

Twistor theory is a subject of great interest in mathematical physics. BP0 has been shown to contain a
twistor structure due to to its topological properties [1]. Although this characteristic has been shown, the
complete topology and its properties were unknown. Our goal is to determine a basis for the topology of BP0

as well as explore stereographic projections and separation properties of this basis. In section II we outline
the relevant background needed for the results in section III. We construct BP0 and then find a basis for the
topology in section III. We note that C2⇥2 and B are isomorphic as algebras, which is the only structure
needed this paper. Thus, we represent biquaternions as 2⇥ 2 complex matrices throughout.

2 Background

2.1 Definitions

For standard results on topological spaces, see [3].

Definition 1. A set X for which a topology ⌧ has been specified is called a topological space. The
elements of ⌧ are called open subsets of X.

Definition 2. A map f : X −! Y is said to be continuous if for each open set V ✓ Y the set f−1(V ) is
open in X.

Definition 3. A map f : X −! Y is said to be an open map if for each open set U of X, the set f(U) is
open in Y .

Definition 4. Let X and Y be topological spaces; let p : X −! Y be a surjective (i.e. onto) map. The map
p is said to be a quotient map, provided a subset of V of Y is open in Y if and only if P−1(V ) is open in
X.

Definition 5. If X is a space, A is a set, and p : X −! A is a surjective map, then there exists exactly one
topology ⌧ on A relative to which p is a quotient map; it is called the quotient topology induced by p.
The set A with the quotient topology is called a quotient space.

2.2 Theorems

With the previous definitions, we can prove the following general theorems

Theorem 2.1. Let f : (X, ⌧X) ! (Y, ⌧Y ) be invertible and continuous. Then f is open if and only if f

−1
is

continuous.

1 (1)

(2)

(3)
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2 centered at (0, 0, 1
2 ) in Euclidean

(⇠, ⌘, ⇣) space, the plane ⇣ = 0 coincides with the complex plane C, and the ⇠ and ⌘ axes correspond to the x
and y axes, respectively. We associate each point (⇠, ⌘, ⇣) on the sphere with a complex number (x, y) where
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Then a basis for B will be

BB = {D"(A) : " > 0, A 2 B} (7)

For the construction of the projective space, it is necessary to remove the zero vector. From subspace
topology, our basis now becomes

BB0 = {D"(A)− {~0} : " > 0, A 2 B} (8)

where B0 = B− {~0}.

3.2 Construction of the Matrix Projective Point BP0

To construct the projective point over B, we expand upon the method in [1]. In brief, after forming B0, we
take the quotient modulo the equivalence relation

A ⇠ B () A = Bλ, λ 2 GL(2,C). (9)

We end up getting the equivalence classes of the form

⇥�

1 0
0 1

�⇤

,

⇥�

1 0
0 0

�⇤

,

⇥�

c 0
1 0

�⇤

c 2 C. (10)

We will refer to these equivalence classes as types I, II, and III, respectively. In more detail we construct
BP0 by considering the quotient space with relation ⇠, that is BP0 = B0

/ ⇠. Our relation between the two
spaces is then defined by the function

p(↵) =
n

δ 2 B0 : δ = ↵⇤, ↵ 2 B0
, 8⇤ 2 GL(2,C)

o

. (11)
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where γ 2 C.

Proof.

Case 1. Suppose ↵ is invertible.

We need to find all δ such that δ = ↵⇤ for all arbitrary ⇤. But since ↵ is invertible, ↵−1
δ = ⇤ is true if

and only if δ is invertible. Thus, p(↵) = GL(2,C) which is the set of all invertible matrices.

Case 2. Suppose ↵ is singular.

The most general singular 2 ⇥ 2 matrix has the form ↵ =
�

µ~u ⌫~u

�

. We can find an invertible matrix
in order to replace ↵ with a representative having zeros in the second column. To see this, we need a
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Note that if ⌫ = 0, then there is no issue. If µ = 0, then we can multiply ↵ by a permutation matrix in
order to make the second column a zero column. Multiplying and setting the components of the left and
right sides equal we have

µu1b+ ⌫u1d = 0 (14)

µu2b+ ⌫u2d = 0

µu1a+ ⌫u1c = µu1

µu2a+ ⌫u2c = µu2
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3.3 Topology of BP0

In order to use our quotient map to find a basis, we must first show p is an open map. To do this we consider
the simpler case of matrix multiplication.

Theorem 3.2. Let ⇤ 2 GL(2,C) be arbitrary. If

f⇤ : B −! B
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Then f⇤ is a continuous, open, bijection.
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−1 = f⇤−1 , and f⇤ is a bijection.

Since multiplication by a fixed matrix is continuous, f⇤ is continuous for an arbitrary fixed ⇤ 2 GL(2,C).
We need to show that f⇤ is open. From Theorem 2.1, f⇤ is open if and only if f⇤

−1 is continuous. We know
that f⇤

−1 = f⇤−1 , and f⇤−1 is continuous by assumption. Therefore, f⇤
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to show that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Note that since f is invertible, (f−1)−1 = f. Thus, it is sufficient
to show that 8 U 2 ⌧X , f(U) 2 ⌧Y . Since f is open, we know by definition that 8 U 2 ⌧X , f(U) 2 ⌧Y .

Therefore, f−1 is continuous.

Let f−1 be continuous. We need to show that f is open. To show that f is open, we need to show that
8 U 2 ⌧X , f(U) 2 ⌧Y . Since f

−1 is continuous, we know by definition that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Since
f is invertible, (f−1)−1 = f, so 8 U 2 ⌧X , f(U) 2 ⌧Y . Therefore, f is open.

Theorem 2.2. If f : (X, ⌧X) −! (Y, ⌧Y ) is a continuous, open surjection, and BX is a basis for ⌧X , then

{f(B) | B 2 BX} (1)

is a basis for ⌧Y .

Proof. Let V 2 ⌧Y be arbitrary. Then f

−1(V ) 2 ⌧X since f is continuous. Since BX is a basis for ⌧X ,
9 {B↵ : B↵ 2 BX 8↵} ✓ BX such that f−1(V ) =

S

↵ B↵. Since f is a surjection, we have f(f−1(V )) = V , so

V = f(f−1(V )) = f(
[

↵

B↵) =
[

↵

f(B↵). (2)

A basis is a subset BY of ⌧Y in which all other open sets can be written as unions of the basis elements.
Since V 2 ⌧Y is arbitrary and V =

S

↵ f(B↵),

{f(B) | B 2 BX} (3)

is a basis for ⌧Y .
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Proof. To prove P is open, we need to show that
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Let U 2 ⌧B0 be arbitrary. Then
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, [A] =
�

B 2 B0 : B = A⇤, 8 ⇤ 2 GL(2,C)
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Hence p
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Since our map p is open, we may now use Theorem 2.2 to determine a basis for BP0.
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Thus we have found a basis for the standard topology of BP0.

3.4 Separation Properties of BP0

There are two cases of interest here: the separation of type I from type II and III equivalence classes, and
vice-versa.

We first show the type I class is not separable from the type II and III classes, therefore rendering the
space non-Hausdor↵. Define
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⇤ =
h

✓

1 0
0 1
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. (30)

Theorem 3.4. For all open subsets V ✓ BP0
, ⇤ 2 V.

Proof. Suppose we have a general non-invertible matrix A =

✓

µa 0
µb 0

◆

where µ 6= 0. We need to show that

given a basic open set p(B"(A)) ✓ BP0
, ⇤ 2 p(B"(A)) for all " > 0. Consider shifting the matrix by some

complex matrix
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0 δ

0 0

◆

where 0 < δ < ". Then,

✓

µa δ

µb 0

◆

2 B"(A). (31)
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Hence p
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Thus we have found a basis for the standard topology of BP0.

3.4 Separation Properties of BP0
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.

Since U 2 ⌧C0
2⇥2

and f⇤ is open, f⇤(U) 2 ⌧C0
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Thus we have found a basis for the standard topology of BP0.

3.4 Separation Properties of BP0

There are two cases of interest here: the separation of type I from type II and III equivalence classes, and
vice-versa.
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Hence p
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Thus we have found a basis for the standard topology of BP0.

3.4 Separation Properties of BP0

There are two cases of interest here: the separation of type I from type II and III equivalence classes, and
vice-versa.
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=
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.
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Hence p
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and p(U) 2 ⌧C0
2⇥2/⇠. So p maps open sets in the domain to open sets in the

codomain, therefore p is open.

Since our map p is open, we may now use Theorem 2.2 to determine a basis for BP0.
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Thus we have found a basis for the standard topology of BP0.

3.4 Separation Properties of BP0

There are two cases of interest here: the separation of type I from type II and III equivalence classes, and
vice-versa.

We first show the type I class is not separable from the type II and III classes, therefore rendering the
space non-Hausdor↵. Define
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given a basic open set p(B"(A)) ✓ BP0
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2⇥2/⇠ if and only if p−1(p(U)) 2 ⌧C0

2⇥2
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=
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.
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Hence p

−1(p(U)) 2 ⌧C0
2⇥2
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2⇥2/⇠. So p maps open sets in the domain to open sets in the

codomain, therefore p is open.
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Thus we have found a basis for the standard topology of BP0.

3.4 Separation Properties of BP0
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vice-versa.
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given a basic open set p(B"(A)) ✓ BP0
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.
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Hence p
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2⇥2/⇠. So p maps open sets in the domain to open sets in the
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Thus we have found a basis for the standard topology of BP0.
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given a basic open set p(B"(A)) ✓ BP0
, ⇤ 2 p(B"(A)) for all " > 0. Consider shifting the matrix by some
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where b can be choosen such that det (⇤) = −bµ
⌫ 6= 0 Therefore under these assumptions, we may choose our
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that f⇤

−1 = f⇤−1 , and f⇤−1 is continuous by assumption. Therefore, f⇤
−1 is continuous, so f⇤ is open.

Now we can use Theorem 3.2 to show p is an open map.

Theorem 3.3. Let

p : B0 −! B0
, (21)

where

p(A) = {B 2 B0 : B = A⇤, ⇤ 2 GL(2,C)}. (22)

Then, p(A) is open.

4

which has solutions c = µ−µa
⌫ and d = −µd

⌫ provided that u1, u2 6= 0. So,

✓

a b

c d

◆

=

✓

a b

µ−µa
⌫

−µb
⌫

◆

(15)

where b can be choosen such that det (⇤) = −bµ
⌫ 6= 0 Therefore under these assumptions, we may choose our

representative ↵ to have the form

↵ =

✓

γ 0
1 0

◆

. (16)

It follows that matrices of this form generate the equivalence classes
h

✓

γ 0
1 0

◆

i

for γ 2 C.

Case 2.1. Now suppose u2 = 0, and u1 6= 0.

As above, we can multiply by an invertible matrix to make the second column a zero column. Then ↵

takes the form

↵ =

✓

µu1 0
0 0

◆

. (17)

We can multiply this matrix by diag( 1
µu1

,

1
µu1

) to be an element of its own equivalence class represented by
h

✓

1 0
0 0

◆

i

.

Therefore the space BP0 must only contain the three equivalence classes and hence

BP0 =
nh

✓

1 0
0 1

◆

io

[

nh

✓

γ 0
1 0

◆

: γ 2 C
io

[

nh

✓

1 0
0 0

◆

io

. (18)

3.3 Topology of BP0

In order to use our quotient map to find a basis, we must first show p is an open map. To do this we consider
the simpler case of matrix multiplication.

Theorem 3.2. Let ⇤ 2 GL(2,C) be arbitrary. If

f⇤ : B −! B
: A 7−! A⇤

Then f⇤ is a continuous, open, bijection.

Proof. To show that f⇤ is a bijection, we will show that f⇤
−1 = f⇤−1 .

f⇤−1(f⇤(A)) = f⇤−1(A⇤) = (A⇤)⇤−1 = A(⇤⇤−1) = A, (19)

f⇤(f⇤−1(A)) = f⇤(A⇤
−1) = (A⇤−1)⇤ = A(⇤−1⇤) = A. (20)

Therefore, f⇤
−1 = f⇤−1 , and f⇤ is a bijection.

Since multiplication by a fixed matrix is continuous, f⇤ is continuous for an arbitrary fixed ⇤ 2 GL(2,C).
We need to show that f⇤ is open. From Theorem 2.1, f⇤ is open if and only if f⇤

−1 is continuous. We know
that f⇤

−1 = f⇤−1 , and f⇤−1 is continuous by assumption. Therefore, f⇤
−1 is continuous, so f⇤ is open.

Now we can use Theorem 3.2 to show p is an open map.

Theorem 3.3. Let

p : B0 −! B0
, (21)

where

p(A) = {B 2 B0 : B = A⇤, ⇤ 2 GL(2,C)}. (22)

Then, p(A) is open.

4

Proof. Let f be open. We need to show that f

−1 is continuous. To show that f

−1 is continuous, we need
to show that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Note that since f is invertible, (f−1)−1 = f. Thus, it is sufficient
to show that 8 U 2 ⌧X , f(U) 2 ⌧Y . Since f is open, we know by definition that 8 U 2 ⌧X , f(U) 2 ⌧Y .

Therefore, f−1 is continuous.

Let f−1 be continuous. We need to show that f is open. To show that f is open, we need to show that
8 U 2 ⌧X , f(U) 2 ⌧Y . Since f

−1 is continuous, we know by definition that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Since
f is invertible, (f−1)−1 = f, so 8 U 2 ⌧X , f(U) 2 ⌧Y . Therefore, f is open.

Theorem 2.2. If f : (X, ⌧X) −! (Y, ⌧Y ) is a continuous, open surjection, and BX is a basis for ⌧X , then

{f(B) | B 2 BX} (1)

is a basis for ⌧Y .

Proof. Let V 2 ⌧Y be arbitrary. Then f

−1(V ) 2 ⌧X since f is continuous. Since BX is a basis for ⌧X ,
9 {B↵ : B↵ 2 BX 8↵} ✓ BX such that f−1(V ) =

S

↵ B↵. Since f is a surjection, we have f(f−1(V )) = V , so

V = f(f−1(V )) = f(
[

↵

B↵) =
[

↵

f(B↵). (2)

A basis is a subset BY of ⌧Y in which all other open sets can be written as unions of the basis elements.
Since V 2 ⌧Y is arbitrary and V =

S

↵ f(B↵),

{f(B) | B 2 BX} (3)

is a basis for ⌧Y .

2.3 Stereographic Projection

Stereographic projection (see [2]) is a one-to-one correspondence between complex numbers and the points
on the surface of a punctured sphere. Looking at the sphere of radius 1

2 centered at (0, 0, 1
2 ) in Euclidean

(⇠, ⌘, ⇣) space, the plane ⇣ = 0 coincides with the complex plane C, and the ⇠ and ⌘ axes correspond to the x
and y axes, respectively. We associate each point (⇠, ⌘, ⇣) on the sphere with a complex number (x, y) where
the ray from the north pole of the sphere (0, 0, 1) through (⇠, ⌘, ⇣) intersects C. This correspondence is given
by

x =
⇠

1− ⇣

, y =
⌘

1− ⇣

, (4)

and

⇠ =
x

x

2 + y

2 + 1
, ⌘ =

y

x

2 + y

2 + 1
, ⇣ =

x

2 + y

2

x

2 + y

2 + 1
. (5)

3 The Projective Point BP0

3.1 Preliminary: Topology of B
Before we consider the topology of the quotient space, we will provide a brief overview of the topology of
B. To find the topology, it is sufficient to find a basis which generates all open sets via arbitrary unions.
Consider an arbitrary element A in B

A =

✓

z1 z2

z3 z4

◆

(6)

Basic open sets in the complex plane are given by open disks D"(z) = {! 2 C : |z − !| < "}. Define

D"(A) =

✓

D"(z1) D"(z2)
D"(z3) D"(z4)

◆

.

2

(21)

(22)

(23)

(24)

(25)

(26)
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Proof. Suppose we have a general non-invertible matrix                            .          We need 

to show that given a basic open set                                                             Consider 

shifting the matrix by some complex matrix

Proof. To prove P is open, we need to show that

8 U 2 ⌧B0
, p(U) 2 ⌧C0

2⇥2/⇠. (23)

Let U 2 ⌧B0 be arbitrary. Then

p(U) =
�

[A] 2 BP0 : 8 A 2 U

 

, [A] =
�

B 2 B0 : B = A⇤, 8 ⇤ 2 GL(2,C)
 

. (24)

By the definition of the quotient topology, p(U) 2 ⌧C0
2⇥2/⇠ if and only if p−1(p(U)) 2 ⌧C0

2⇥2
. By Theorem 2.2

we have,

p

−1(p(U)) =
�

B 2 B0 : B = A⇤ 8 A 2 U, 8 ⇤ 2 GL(2,C)
 

(25)

=
[

⇤2GL(2,C)

�

f⇤(U)
 

.

Since U 2 ⌧C0
2⇥2

and f⇤ is open, f⇤(U) 2 ⌧C0
2⇥2

for each ⇤ 2 GL(2,C). An arbitrary union of open sets is
open, so

[

⇤2GL(2,C)

�

f⇤(U)
 

2 ⌧C0
2⇥2

. (26)

Hence p

−1(p(U)) 2 ⌧C0
2⇥2

and p(U) 2 ⌧C0
2⇥2/⇠. So p maps open sets in the domain to open sets in the

codomain, therefore p is open.

Since our map p is open, we may now use Theorem 2.2 to determine a basis for BP0.

BP0 = {p(D"(A)) : " > 0, 8A 2 B0} (27)

BP0 = p

�

B"(A)
�

= {⇤} [
n

⇥ �

~u 0
� ⇤

: ~u 2 B"

✓

a

b

◆

^ C~u \ B"

✓

c

d

◆

6= ; (28)

_ ~u 2 B"

✓

c

d

◆

^ C~u \ B"

✓

a

b

◆

6= ;
o

(29)

Thus we have found a basis for the standard topology of BP0.

3.4 Separation Properties of BP0

There are two cases of interest here: the separation of type I from type II and III equivalence classes, and
vice-versa.

We first show the type I class is not separable from the type II and III classes, therefore rendering the
space non-Hausdor↵. Define

⇤ =
h

✓

1 0
0 1

◆

i

. (30)

Theorem 3.4. For all open subsets V ✓ BP0
, ⇤ 2 V.

Proof. Suppose we have a general non-invertible matrix A =

✓

µa 0
µb 0

◆

where µ 6= 0. We need to show that

given a basic open set p(B"(A)) ✓ BP0
, ⇤ 2 p(B"(A)) for all " > 0. Consider shifting the matrix by some
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0 0
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◆
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h
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where µ 6= 0. We need to show that

given a basic open set p(B"(A)) ✓ BP0
, ⇤ 2 p(B"(A)) for all " > 0. Consider shifting the matrix by some
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5
We want to find a case where this matrix will be invertible regardless of the choice of a, b or δ. To check
this we take a determinant of the shifted matrix and set it equal to 0.

�

�

�

�

µa δ

µb 0

�

�

�

�

= µbδ = 0 (32)

But δ, µ 6= 0 if b 6= 0. If b = 0 then this determinant will be zero. If b = 0, shift instead to

�

�

�

�

µa 0
0 δ

�

�

�

�

= µaδ 6= 0. (33)

There does not exist an " > 0 such that ⇤ /2 p(B"(A))

Theorem 3.5. The ball B 1
2
(I) contains no singular matrices.

Proof. Let I =

✓

1 0
0 1

◆

2 GL(2,C), and consider the ball B 1
2
(I) ✓ B0. Consider the element

b

A = I +A =

✓

1 + ↵ β

γ 1 + δ

◆

(34)

in the ball b

A, where we require ↵, β, γ, δ 2 C subject to |↵|, |β|, |γ|, |δ| < 1
2 . Taking the determinant of b

A

and setting it equal to zero we have
(1 + ↵)(1 + δ) = βγ (35)

We have
1/2 < (1 + ↵), (1 + δ) < 3/2

and
−1/2 < β, γ < 1/2,

so that the left hand side of the equation

(1 + ↵)(1 + δ) = βγ

must be greater than the right hand side, and so the equation cannot be satisfied.

Thus, p(B 1
2
(I)) = {⇤} is an open subset of BP0

. As a result the point ⇤ can be separated from all other

points of BP0
.

3.5 Stereographic Projection and BP0

To try to have a better understanding of the topology of BP0, we will use stereographic projection to map the
basis elements of BP0 onto the punctured sphere. We will begin by looking at an epsilon ball of 1

2 centered

at the south pole, B 1
2

⇣

✓

0 0
1 0

◆

⌘

=
n

A =

✓

↵ β

γ + 1 δ

◆

: |↵|, |β|, |γ|, |δ| < 1
2

o

. We will assume that A is a

singular matrix, so det(A) = ↵δ − β(γ + 1) = 0 or β = ↵δ
γ+1 . Substituting this value of β into our matrix A,

we can see that the second column is a linear combination of the first column,

A =

✓

↵

↵δ
γ+1

γ + 1 δ

◆

=

 

↵

δ
γ+1 (↵)

γ + 1 δ
γ+1 (γ + 1)

!

. (36)

We can multiply A by two invertible matrices to get

✓ ↵
γ+1 0

1 0

◆

. This matrix is now similar to our type

III equivalence class which in totality represents the complex plane C. Thus, we will analyze the complex
number z = ↵

γ+1 , and use stereographic projection to see what the neighborhood maps to on the punctured
sphere.
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Proof. To prove P is open, we need to show that

8 U 2 ⌧B0
, p(U) 2 ⌧C0

2⇥2/⇠. (23)

Let U 2 ⌧B0 be arbitrary. Then

p(U) =
�

[A] 2 BP0 : 8 A 2 U

 

, [A] =
�

B 2 B0 : B = A⇤, 8 ⇤ 2 GL(2,C)
 

. (24)

By the definition of the quotient topology, p(U) 2 ⌧C0
2⇥2/⇠ if and only if p−1(p(U)) 2 ⌧C0

2⇥2
. By Theorem 2.2

we have,

p

−1(p(U)) =
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B 2 B0 : B = A⇤ 8 A 2 U, 8 ⇤ 2 GL(2,C)
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f⇤(U)
 

.

Since U 2 ⌧C0
2⇥2

and f⇤ is open, f⇤(U) 2 ⌧C0
2⇥2

for each ⇤ 2 GL(2,C). An arbitrary union of open sets is
open, so

[

⇤2GL(2,C)

�

f⇤(U)
 

2 ⌧C0
2⇥2

. (26)

Hence p

−1(p(U)) 2 ⌧C0
2⇥2

and p(U) 2 ⌧C0
2⇥2/⇠. So p maps open sets in the domain to open sets in the

codomain, therefore p is open.

Since our map p is open, we may now use Theorem 2.2 to determine a basis for BP0.

BP0 = {p(D"(A)) : " > 0, 8A 2 B0} (27)
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B"(A)
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~u 0
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: ~u 2 B"
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^ C~u \ B"

✓

c

d

◆

6= ; (28)
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✓

c

d
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a

b
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6= ;
o

(29)

Thus we have found a basis for the standard topology of BP0.

3.4 Separation Properties of BP0

There are two cases of interest here: the separation of type I from type II and III equivalence classes, and
vice-versa.

We first show the type I class is not separable from the type II and III classes, therefore rendering the
space non-Hausdor↵. Define

⇤ =
h
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1 0
0 1

◆

i

. (30)

Theorem 3.4. For all open subsets V ✓ BP0
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where µ 6= 0. We need to show that

given a basic open set p(B"(A)) ✓ BP0
, ⇤ 2 p(B"(A)) for all " > 0. Consider shifting the matrix by some

complex matrix
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0 δ

0 0

◆

where 0 < δ < ". Then,
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µa δ

µb 0

◆

2 B"(A). (31)
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There are two cases of interest here: the separation of type I from type II and III equivalence classes, and
vice-versa.

We first show the type I class is not separable from the type II and III classes, therefore rendering the
space non-Hausdor↵. Define
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1 0
0 1
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i

. (30)

Theorem 3.4. For all open subsets V ✓ BP0
, ⇤ 2 V.

Proof. Suppose we have a general non-invertible matrix A =

✓

µa 0
µb 0

◆

where µ 6= 0. We need to show that

given a basic open set p(B"(A)) ✓ BP0
, ⇤ 2 p(B"(A)) for all " > 0. Consider shifting the matrix by some

complex matrix

✓

0 δ

0 0

◆

where 0 < δ < ". Then,

✓

µa δ

µb 0

◆

2 B"(A). (31)
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Proof. To prove P is open, we need to show that
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2⇥2/⇠. (23)
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�
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2⇥2
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.

Since U 2 ⌧C0
2⇥2

and f⇤ is open, f⇤(U) 2 ⌧C0
2⇥2
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2⇥2
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✓
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Thus we have found a basis for the standard topology of BP0.

3.4 Separation Properties of BP0

There are two cases of interest here: the separation of type I from type II and III equivalence classes, and
vice-versa.

We first show the type I class is not separable from the type II and III classes, therefore rendering the
space non-Hausdor↵. Define

⇤ =
h

✓

1 0
0 1

◆

i

. (30)

Theorem 3.4. For all open subsets V ✓ BP0
, ⇤ 2 V.

Proof. Suppose we have a general non-invertible matrix A =

✓

µa 0
µb 0

◆

where µ 6= 0. We need to show that

given a basic open set p(B"(A)) ✓ BP0
, ⇤ 2 p(B"(A)) for all " > 0. Consider shifting the matrix by some

complex matrix

✓

0 δ

0 0

◆

where 0 < δ < ". Then,

✓

µa δ

µb 0

◆

2 B"(A). (31)
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There are two cases of interest here: the separation of type I from type II and III equivalence 
classes, and vice-versa.

We first show the type I class is not separable from the type II and III classes, therefore 
rendering the space non-Hausdorff. Define

We want to find a case where this matrix will be invertible regardless of the choice of a, b or   . 
To check this we take a determinant of the shifted matrix and set it equal to 0.

determinant of    and setting it equal to zero we have

Proof.

3.4 Separation Properties of

Proof. Let f be open. We need to show that f

−1 is continuous. To show that f

−1 is continuous, we need
to show that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Note that since f is invertible, (f−1)−1 = f. Thus, it is sufficient
to show that 8 U 2 ⌧X , f(U) 2 ⌧Y . Since f is open, we know by definition that 8 U 2 ⌧X , f(U) 2 ⌧Y .

Therefore, f−1 is continuous.

Let f−1 be continuous. We need to show that f is open. To show that f is open, we need to show that
8 U 2 ⌧X , f(U) 2 ⌧Y . Since f

−1 is continuous, we know by definition that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Since
f is invertible, (f−1)−1 = f, so 8 U 2 ⌧X , f(U) 2 ⌧Y . Therefore, f is open.

Theorem 2.2. If f : (X, ⌧X) −! (Y, ⌧Y ) is a continuous, open surjection, and BX is a basis for ⌧X , then

{f(B) | B 2 BX} (1)

is a basis for ⌧Y .

Proof. Let V 2 ⌧Y be arbitrary. Then f

−1(V ) 2 ⌧X since f is continuous. Since BX is a basis for ⌧X ,
9 {B↵ : B↵ 2 BX 8↵} ✓ BX such that f−1(V ) =

S

↵ B↵. Since f is a surjection, we have f(f−1(V )) = V , so

V = f(f−1(V )) = f(
[

↵

B↵) =
[

↵

f(B↵). (2)

A basis is a subset BY of ⌧Y in which all other open sets can be written as unions of the basis elements.
Since V 2 ⌧Y is arbitrary and V =

S

↵ f(B↵),

{f(B) | B 2 BX} (3)

is a basis for ⌧Y .

2.3 Stereographic Projection

Stereographic projection (see [2]) is a one-to-one correspondence between complex numbers and the points
on the surface of a punctured sphere. Looking at the sphere of radius 1

2 centered at (0, 0, 1
2 ) in Euclidean

(⇠, ⌘, ⇣) space, the plane ⇣ = 0 coincides with the complex plane C, and the ⇠ and ⌘ axes correspond to the x
and y axes, respectively. We associate each point (⇠, ⌘, ⇣) on the sphere with a complex number (x, y) where
the ray from the north pole of the sphere (0, 0, 1) through (⇠, ⌘, ⇣) intersects C. This correspondence is given
by

x =
⇠

1− ⇣

, y =
⌘

1− ⇣

, (4)

and

⇠ =
x

x

2 + y

2 + 1
, ⌘ =

y

x

2 + y

2 + 1
, ⇣ =

x

2 + y

2

x

2 + y

2 + 1
. (5)

3 The Projective Point BP0

3.1 Preliminary: Topology of B
Before we consider the topology of the quotient space, we will provide a brief overview of the topology of
B. To find the topology, it is sufficient to find a basis which generates all open sets via arbitrary unions.
Consider an arbitrary element A in B

A =

✓

z1 z2

z3 z4

◆

(6)

Basic open sets in the complex plane are given by open disks D"(z) = {! 2 C : |z − !| < "}. Define

D"(A) =

✓

D"(z1) D"(z2)
D"(z3) D"(z4)

◆

.

2
Theorem 3.4. For all open subsets 

Theorem 3.5. The ball          contains no singular matrices. 

We want to find a case where this matrix will be invertible regardless of the choice of a, b or δ. To check
this we take a determinant of the shifted matrix and set it equal to 0.
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�

µa δ

µb 0

�

�

�

�

= µbδ = 0 (32)

But δ, µ 6= 0 if b 6= 0. If b = 0 then this determinant will be zero. If b = 0, shift instead to

�

�

�

�

µa 0
0 δ

�

�

�

�

= µaδ 6= 0. (33)

There does not exist an " > 0 such that ⇤ /2 p(B"(A))

Theorem 3.5. The ball B 1
2
(I) contains no singular matrices.

Proof. Let I =

✓

1 0
0 1

◆

2 GL(2,C), and consider the ball B 1
2
(I) ✓ B0. Consider the element

b

A = I +A =

✓

1 + ↵ β

γ 1 + δ

◆

(34)

in the ball b

A, where we require ↵, β, γ, δ 2 C subject to |↵|, |β|, |γ|, |δ| < 1
2 . Taking the determinant of b

A

and setting it equal to zero we have
(1 + ↵)(1 + δ) = βγ (35)

We have
1/2 < (1 + ↵), (1 + δ) < 3/2

and
−1/2 < β, γ < 1/2,

so that the left hand side of the equation

(1 + ↵)(1 + δ) = βγ

must be greater than the right hand side, and so the equation cannot be satisfied.

Thus, p(B 1
2
(I)) = {⇤} is an open subset of BP0

. As a result the point ⇤ can be separated from all other

points of BP0
.

3.5 Stereographic Projection and BP0

To try to have a better understanding of the topology of BP0, we will use stereographic projection to map the
basis elements of BP0 onto the punctured sphere. We will begin by looking at an epsilon ball of 1

2 centered

at the south pole, B 1
2

⇣

✓

0 0
1 0

◆

⌘

=
n

A =

✓

↵ β

γ + 1 δ

◆

: |↵|, |β|, |γ|, |δ| < 1
2

o

. We will assume that A is a

singular matrix, so det(A) = ↵δ − β(γ + 1) = 0 or β = ↵δ
γ+1 . Substituting this value of β into our matrix A,

we can see that the second column is a linear combination of the first column,

A =

✓

↵

↵δ
γ+1

γ + 1 δ

◆

=

 

↵

δ
γ+1 (↵)

γ + 1 δ
γ+1 (γ + 1)

!

. (36)

We can multiply A by two invertible matrices to get

✓ ↵
γ+1 0

1 0

◆

. This matrix is now similar to our type

III equivalence class which in totality represents the complex plane C. Thus, we will analyze the complex
number z = ↵

γ+1 , and use stereographic projection to see what the neighborhood maps to on the punctured
sphere.

6

Proof. Let f be open. We need to show that f

−1 is continuous. To show that f

−1 is continuous, we need
to show that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Note that since f is invertible, (f−1)−1 = f. Thus, it is sufficient
to show that 8 U 2 ⌧X , f(U) 2 ⌧Y . Since f is open, we know by definition that 8 U 2 ⌧X , f(U) 2 ⌧Y .

Therefore, f−1 is continuous.

Let f−1 be continuous. We need to show that f is open. To show that f is open, we need to show that
8 U 2 ⌧X , f(U) 2 ⌧Y . Since f

−1 is continuous, we know by definition that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Since
f is invertible, (f−1)−1 = f, so 8 U 2 ⌧X , f(U) 2 ⌧Y . Therefore, f is open.

Theorem 2.2. If f : (X, ⌧X) −! (Y, ⌧Y ) is a continuous, open surjection, and BX is a basis for ⌧X , then

{f(B) | B 2 BX} (1)

is a basis for ⌧Y .

Proof. Let V 2 ⌧Y be arbitrary. Then f

−1(V ) 2 ⌧X since f is continuous. Since BX is a basis for ⌧X ,
9 {B↵ : B↵ 2 BX 8↵} ✓ BX such that f−1(V ) =

S

↵ B↵. Since f is a surjection, we have f(f−1(V )) = V , so

V = f(f−1(V )) = f(
[

↵

B↵) =
[

↵

f(B↵). (2)

A basis is a subset BY of ⌧Y in which all other open sets can be written as unions of the basis elements.
Since V 2 ⌧Y is arbitrary and V =

S

↵ f(B↵),

{f(B) | B 2 BX} (3)

is a basis for ⌧Y .

2.3 Stereographic Projection

Stereographic projection (see [2]) is a one-to-one correspondence between complex numbers and the points
on the surface of a punctured sphere. Looking at the sphere of radius 1

2 centered at (0, 0, 1
2 ) in Euclidean

(⇠, ⌘, ⇣) space, the plane ⇣ = 0 coincides with the complex plane C, and the ⇠ and ⌘ axes correspond to the x
and y axes, respectively. We associate each point (⇠, ⌘, ⇣) on the sphere with a complex number (x, y) where
the ray from the north pole of the sphere (0, 0, 1) through (⇠, ⌘, ⇣) intersects C. This correspondence is given
by

x =
⇠

1− ⇣

, y =
⌘

1− ⇣

, (4)

and

⇠ =
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2 + 1
, ⌘ =
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, ⇣ =
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2

x

2 + y

2 + 1
. (5)

3 The Projective Point BP0

3.1 Preliminary: Topology of B
Before we consider the topology of the quotient space, we will provide a brief overview of the topology of
B. To find the topology, it is sufficient to find a basis which generates all open sets via arbitrary unions.
Consider an arbitrary element A in B

A =

✓

z1 z2

z3 z4

◆

(6)

Basic open sets in the complex plane are given by open disks D"(z) = {! 2 C : |z − !| < "}. Define

D"(A) =

✓

D"(z1) D"(z2)
D"(z3) D"(z4)

◆
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We can multiply A by two invertible matrices to get                 This matrix is now similar to 

our type III equivalence class which in totality represents the complex plane     Thus, we will 
analyze the complex number            , and use stereographic projection to see what the 
neighborhood maps to on the punctured sphere.

We want to find a case where this matrix will be invertible regardless of the choice of a, b or δ. To check
this we take a determinant of the shifted matrix and set it equal to 0.
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= µbδ = 0 (32)

But δ, µ 6= 0 if b 6= 0. If b = 0 then this determinant will be zero. If b = 0, shift instead to
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= µaδ 6= 0. (33)

There does not exist an " > 0 such that ⇤ /2 p(B"(A))

Theorem 3.5. The ball B 1
2
(I) contains no singular matrices.

Proof. Let I =

✓

1 0
0 1

◆

2 GL(2,C), and consider the ball B 1
2
(I) ✓ B0. Consider the element

b

A = I +A =

✓

1 + ↵ β

γ 1 + δ

◆

(34)

in the ball b

A, where we require ↵, β, γ, δ 2 C subject to |↵|, |β|, |γ|, |δ| < 1
2 . Taking the determinant of b

A

and setting it equal to zero we have
(1 + ↵)(1 + δ) = βγ (35)

We have
1/2 < (1 + ↵), (1 + δ) < 3/2

and
−1/2 < β, γ < 1/2,

so that the left hand side of the equation

(1 + ↵)(1 + δ) = βγ

must be greater than the right hand side, and so the equation cannot be satisfied.

Thus, p(B 1
2
(I)) = {⇤} is an open subset of BP0

. As a result the point ⇤ can be separated from all other

points of BP0
.

3.5 Stereographic Projection and BP0

To try to have a better understanding of the topology of BP0, we will use stereographic projection to map the
basis elements of BP0 onto the punctured sphere. We will begin by looking at an epsilon ball of 1

2 centered

at the south pole, B 1
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. We will assume that A is a

singular matrix, so det(A) = ↵δ − β(γ + 1) = 0 or β = ↵δ
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number z = ↵

γ+1 , and use stereographic projection to see what the neighborhood maps to on the punctured
sphere.
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and
−1/2 < β, γ < 1/2,

so that the left hand side of the equation

(1 + ↵)(1 + δ) = βγ

must be greater than the right hand side, and so the equation cannot be satisfied.

Thus, p(B 1
2
(I)) = {⇤} is an open subset of BP0

. As a result the point ⇤ can be separated from all other

points of BP0
.

3.5 Stereographic Projection and BP0

To try to have a better understanding of the topology of BP0, we will use stereographic projection to map the
basis elements of BP0 onto the punctured sphere. We will begin by looking at an epsilon ball of 1

2 centered

at the south pole, B 1
2
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1 0

◆

⌘

=
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A =
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number z = ↵
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sphere.
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We want to find a case where this matrix will be invertible regardless of the choice of a, b or δ. To check
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and
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so that the left hand side of the equation

(1 + ↵)(1 + δ) = βγ

must be greater than the right hand side, and so the equation cannot be satisfied.

Thus, p(B 1
2
(I)) = {⇤} is an open subset of BP0

. As a result the point ⇤ can be separated from all other

points of BP0
.

3.5 Stereographic Projection and BP0

To try to have a better understanding of the topology of BP0, we will use stereographic projection to map the
basis elements of BP0 onto the punctured sphere. We will begin by looking at an epsilon ball of 1

2 centered

at the south pole, B 1
2
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=
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A =
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. We will assume that A is a
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we can see that the second column is a linear combination of the first column,

A =

✓

↵

↵δ
γ+1

γ + 1 δ

◆

=

 

↵

δ
γ+1 (↵)

γ + 1 δ
γ+1 (γ + 1)

!

. (36)

We can multiply A by two invertible matrices to get

✓ ↵
γ+1 0

1 0

◆

. This matrix is now similar to our type

III equivalence class which in totality represents the complex plane C. Thus, we will analyze the complex
number z = ↵

γ+1 , and use stereographic projection to see what the neighborhood maps to on the punctured
sphere.

6

We want to find a case where this matrix will be invertible regardless of the choice of a, b or δ. To check
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✓

1 + ↵ β

γ 1 + δ

◆

(34)
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and setting it equal to zero we have
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We have
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and
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(1 + ↵)(1 + δ) = βγ

must be greater than the right hand side, and so the equation cannot be satisfied.

Thus, p(B 1
2
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. As a result the point ⇤ can be separated from all other

points of BP0
.

3.5 Stereographic Projection and BP0

To try to have a better understanding of the topology of BP0, we will use stereographic projection to map the
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Doing stereographic projection on all the points of this disk will give us the bottom hemisphere of the sphere.
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γ looks like the reciprocal of z = ↵
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So points of the form w = ↵+1
γ in C comprise the outside of the the open disk of radius one centered at the

origin.

Note that the reciprocal transformation and stereographic projection are both continuous bijections onto
their images. Also, γ+1

↵ is the complement of ↵
γ+1 in C, so rather than use stereographic projection to map

γ+1
↵ onto the sphere, we will map ↵

γ+1 onto the sphere and consider its complement. As we saw above,
↵

γ+1 maps onto the southern hemisphere of the sphere. The complement of the southern hemisphere is the

northern hemisphere. Therefore, γ+1
↵ maps to the northern hemisphere of the punctured sphere.

So topologically, a basic open neighborhood of ( 0 0
1 0 ) is locally equivalent to the topology of the southern

hemisphere of the sphere. Likewise, a basic open neighborhood of ( 1 0
0 0 ) is locally equivalent to the northern

hemisphere of the sphere.
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We want to find a case where this matrix will be invertible regardless of the choice of a, b or δ. To check
this we take a determinant of the shifted matrix and set it equal to 0.
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�

�

�

µa δ

µb 0

�

�

�

�

= µbδ = 0 (32)

But δ, µ 6= 0 if b 6= 0. If b = 0 then this determinant will be zero. If b = 0, shift instead to

�

�

�

�

µa 0
0 δ

�

�

�

�

= µaδ 6= 0. (33)

There does not exist an " > 0 such that ⇤ /2 p(B"(A))

Theorem 3.5. The ball B 1
2
(I) contains no singular matrices.

Proof. Let I =

✓

1 0
0 1

◆

2 GL(2,C), and consider the ball B 1
2
(I) ✓ B0. Consider the element

b

A = I +A =

✓

1 + ↵ β

γ 1 + δ

◆

(34)

in the ball b

A, where we require ↵, β, γ, δ 2 C subject to |↵|, |β|, |γ|, |δ| < 1
2 . Taking the determinant of b

A

and setting it equal to zero we have
(1 + ↵)(1 + δ) = βγ (35)

We have
1/2 < (1 + ↵), (1 + δ) < 3/2

and
−1/2 < β, γ < 1/2,

so that the left hand side of the equation

(1 + ↵)(1 + δ) = βγ

must be greater than the right hand side, and so the equation cannot be satisfied.

Thus, p(B 1
2
(I)) = {⇤} is an open subset of BP0

. As a result the point ⇤ can be separated from all other

points of BP0
.

3.5 Stereographic Projection and BP0

To try to have a better understanding of the topology of BP0, we will use stereographic projection to map the
basis elements of BP0 onto the punctured sphere. We will begin by looking at an epsilon ball of 1

2 centered

at the south pole, B 1
2

⇣

✓

0 0
1 0

◆

⌘

=
n

A =
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↵ β

γ + 1 δ

◆

: |↵|, |β|, |γ|, |δ| < 1
2

o

. We will assume that A is a

singular matrix, so det(A) = ↵δ − β(γ + 1) = 0 or β = ↵δ
γ+1 . Substituting this value of β into our matrix A,

we can see that the second column is a linear combination of the first column,

A =

✓

↵

↵δ
γ+1

γ + 1 δ

◆

=

 

↵

δ
γ+1 (↵)

γ + 1 δ
γ+1 (γ + 1)

!

. (36)

We can multiply A by two invertible matrices to get

✓ ↵
γ+1 0

1 0

◆

. This matrix is now similar to our type

III equivalence class which in totality represents the complex plane C. Thus, we will analyze the complex
number z = ↵

γ+1 , and use stereographic projection to see what the neighborhood maps to on the punctured
sphere.
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our matrix A, we can see that the second column is a linear combination of the first column,

3.5 Stereographic Projection and

Proof. Let f be open. We need to show that f

−1 is continuous. To show that f

−1 is continuous, we need
to show that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Note that since f is invertible, (f−1)−1 = f. Thus, it is sufficient
to show that 8 U 2 ⌧X , f(U) 2 ⌧Y . Since f is open, we know by definition that 8 U 2 ⌧X , f(U) 2 ⌧Y .

Therefore, f−1 is continuous.

Let f−1 be continuous. We need to show that f is open. To show that f is open, we need to show that
8 U 2 ⌧X , f(U) 2 ⌧Y . Since f

−1 is continuous, we know by definition that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Since
f is invertible, (f−1)−1 = f, so 8 U 2 ⌧X , f(U) 2 ⌧Y . Therefore, f is open.

Theorem 2.2. If f : (X, ⌧X) −! (Y, ⌧Y ) is a continuous, open surjection, and BX is a basis for ⌧X , then

{f(B) | B 2 BX} (1)

is a basis for ⌧Y .

Proof. Let V 2 ⌧Y be arbitrary. Then f

−1(V ) 2 ⌧X since f is continuous. Since BX is a basis for ⌧X ,
9 {B↵ : B↵ 2 BX 8↵} ✓ BX such that f−1(V ) =

S

↵ B↵. Since f is a surjection, we have f(f−1(V )) = V , so

V = f(f−1(V )) = f(
[

↵

B↵) =
[

↵
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3 The Projective Point BP0

3.1 Preliminary: Topology of B
Before we consider the topology of the quotient space, we will provide a brief overview of the topology of
B. To find the topology, it is sufficient to find a basis which generates all open sets via arbitrary unions.
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(I) contains no singular matrices.
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✓
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A, where we require ↵, β, γ, δ 2 C subject to |↵|, |β|, |γ|, |δ| < 1
2 . Taking the determinant of b

A

and setting it equal to zero we have
(1 + ↵)(1 + δ) = βγ (35)

We have
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must be greater than the right hand side, and so the equation cannot be satisfied.

Thus, p(B 1
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. As a result the point ⇤ can be separated from all other
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3.5 Stereographic Projection and BP0
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basis elements of BP0 onto the punctured sphere. We will begin by looking at an epsilon ball of 1
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We can multiply A by two invertible matrices to get
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γ+1 0

1 0
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. This matrix is now similar to our type

III equivalence class which in totality represents the complex plane C. Thus, we will analyze the complex
number z = ↵

γ+1 , and use stereographic projection to see what the neighborhood maps to on the punctured
sphere.
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Proof. Let f be open. We need to show that f

−1 is continuous. To show that f

−1 is continuous, we need
to show that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Note that since f is invertible, (f−1)−1 = f. Thus, it is sufficient
to show that 8 U 2 ⌧X , f(U) 2 ⌧Y . Since f is open, we know by definition that 8 U 2 ⌧X , f(U) 2 ⌧Y .

Therefore, f−1 is continuous.

Let f−1 be continuous. We need to show that f is open. To show that f is open, we need to show that
8 U 2 ⌧X , f(U) 2 ⌧Y . Since f

−1 is continuous, we know by definition that 8 U 2 ⌧X , (f−1)−1(U) 2 ⌧Y . Since
f is invertible, (f−1)−1 = f, so 8 U 2 ⌧X , f(U) 2 ⌧Y . Therefore, f is open.

Theorem 2.2. If f : (X, ⌧X) −! (Y, ⌧Y ) is a continuous, open surjection, and BX is a basis for ⌧X , then

{f(B) | B 2 BX} (1)

is a basis for ⌧Y .

Proof. Let V 2 ⌧Y be arbitrary. Then f

−1(V ) 2 ⌧X since f is continuous. Since BX is a basis for ⌧X ,
9 {B↵ : B↵ 2 BX 8↵} ✓ BX such that f−1(V ) =

S

↵ B↵. Since f is a surjection, we have f(f−1(V )) = V , so

V = f(f−1(V )) = f(
[

↵

B↵) =
[

↵

f(B↵). (2)

A basis is a subset BY of ⌧Y in which all other open sets can be written as unions of the basis elements.
Since V 2 ⌧Y is arbitrary and V =

S

↵ f(B↵),

{f(B) | B 2 BX} (3)

is a basis for ⌧Y .

2.3 Stereographic Projection

Stereographic projection (see [2]) is a one-to-one correspondence between complex numbers and the points
on the surface of a punctured sphere. Looking at the sphere of radius 1

2 centered at (0, 0, 1
2 ) in Euclidean

(⇠, ⌘, ⇣) space, the plane ⇣ = 0 coincides with the complex plane C, and the ⇠ and ⌘ axes correspond to the x
and y axes, respectively. We associate each point (⇠, ⌘, ⇣) on the sphere with a complex number (x, y) where
the ray from the north pole of the sphere (0, 0, 1) through (⇠, ⌘, ⇣) intersects C. This correspondence is given
by
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3 The Projective Point BP0

3.1 Preliminary: Topology of B
Before we consider the topology of the quotient space, we will provide a brief overview of the topology of
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Thus,
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northern hemisphere. Therefore, γ+1
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hemisphere of the sphere.
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4 Conclusion

In this article we have determined an explicit basis for the topology of BP0
. By investigating the separation

properties of BP0, we have verified that this space is non-Hausdor↵. Through stereographic projection, we
discovered that topologically, basic open neighborhoods of points corresponding to the the north and south
pole are locally equivalent to the basic open neighborhoods of the southern and northern hemisphere of the
sphere.

In future work we will provide an explicit homeomorphism between BP0 and the sphere. Furthermore,
we will determine how continuous functions map into and out of BP0, as well as mappings from BP0 into
itself. We also hope to form a connection between BP0 and BP1 to see if there is any relation between the
two spaces and their twistor structures.
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What Problems Are Appropriate for Gifted Students in 
Grades 2-4?

Dulce Fonseca and Vivian Lopez 
Advisor: Dr. Bogdan D. Suceavă

Abstract

1. Eulerian Trails

In this work we focus on problems explored with gifted math students grades 2–4 during Cal 
State Fullerton Math Circle, Fall 2015. We examined pedagogical strategies to deliver high 
quality presentations where students were challenged to think critically and feel encouraged to 
participate. Problems came from famous problems in mathematics, the 2014–2015 ABACUS 
International Math Challenge problem sets, and Natasha Rozhkovskaya’s Math Circles for 
Elementary School Students. This papers looks at problems that were presented, students’ 
responses to these, and successes and potential improvements for future presentations.

The field of graph theory can be quite interactive for young students because of its visual 
aspects. In one of these graph theory sessions students explored Eulerian Trails. According to 
Brualdi, author of Introductory Combinatorics, a “trail in a general graph G is called Eulerian, 
provided that it contains every edge of G.” [2]. That is to say, a trail is Eulerian if and only if 
there exists a continuous way to trace each edge of a graph exactly once.

With tape, a planar, complete graph with four veritices was created on the floor. Two 
discs were placed on each side of the graph. In the same fashion, a second graph was made in 
the shape of a rectangle with only one diagonal.

Department of Mathematics, California State University, Fullerton
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Students were given the following instructions: Stand at any vertex. You must walk 
through each edge exactly once. As you walk along each edge, pick up the two discs to keep 
track of where you have been and where you still need to go.

The first graph for which students attempted to find an Eulerian trails was the complete 
graph. Eventually, they collectively strategized on what vertex to begin and which tape to 
follow first. The students were unsuccessful at finishing a trial. Their attention was then 
redirected to the second graph. The Eulerian trail was easily completed as students, randomly 
but correctly, chose to start at a vertex with odd degree.

Students were then told that an Eulerian Trail was impossible for the first graph. 
Regardless, they re- fused to accept it and continued to try.

The class came back together to work on the board and investigate when Eulerian trails are 
possible. Analyzing additional graphs, students arrived to the conjecture that in graphs where 
each vertex has an even number of ways to walk off of it, Eulerian trails are possible. If there 
is an odd number of ways to go off of each vertex, then the trail was not possible. However, 
students then recalled that on the second graph on the carpet, they were able to complete the 
trail even though they started on a vertex of odd degree. With guidance, they were able to 
further, and correctly, generalize that a trail can be completed if there are exactly two vertices of 
odd degree. Students were then asked to draw their own graphs to verify their conjectures.

Such efforts to create these conjectures follow the modern day Common Core Standards. 
One of the fourth grade Common Core State Standards (CCSS.MATH.CONTENT.4.OA.C.5) 
states that students should be able to “[g]enerate a number or shape pattern that follows a 
given rule [and] [i]dentify apparent features of the pattern that were not explicit in the rule 
itself” [4]. In this activity students were not told of any rules that Eulerian trails follow. In- 
stead, through exploration and inquiry, students were able to develop their own patterns by 
taking special note of the features of the vertices of the graphs.

One of the bigger demands in this activity was the high vocabulary use. Students were 
required to use the vocabulary of and understand the concepts of odd and even, concepts not 
all second graders had been exposed to. Additional vocabulary use include vertex and edge. To 
ensure successful understanding, time must be spent teaching vocabulary.

Nonetheless, this and other graph theory activities work splendidly for gifted children.
Their curiosity and reluctance to accept facts without understanding allow detailed 
examination. Furthermore, graph theory lends itself to activities that ensure high student 
engagement, as was the case with the tape activity.

The problem of the Tower of Hanoi is an interesting problem for students to tackle because of 
the variety of approaches and activities instructors can engage students with. This problem 
allows for hands-on learning as well as the use of mathematical concepts of exponents.

For this presentation, students were read the legend of the Tower of Hanoi found on the 
Encyclopedia Britannica website [5]. The set up for this problem has three towers, where the 
first tower has a specified number of discs. From top to bottom, the discs are in increasing 
order of radius measure. With the least number of moves and moving one disc at a time, 
students are to transfer all the discs from the first tower to the third tower. A bigger disc can 
never go on top of a smaller disc.

2. Tower of Hanoi
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We began the activity by considering the first two cases, moving one disc and then two discs 
from the first to the third tower. The following table was drawn on the board for later purposes:

Students were finally able to generalize that for n discs, 2n − 1 moves were the least 
number of moves required.

This activity works well for gifted students because it requires long concentration and, at 
least, a basic understanding of exponents. Additionally, problem of the Tower of Hanoi is helpful 
with the Common Core Standards for Mathematical Practices (CCSS.Math.Practice.MP8), 
which states that educators should develop students’ abilities to “[l]ook for and express regularity 
in repeated reasoning” [7]. The essence of this mathematical practice says that students should 
be able to find patterns and generalize their understanding. Students successfully accomplished 
this in this problem. They completed the Tower of Hanoi for the first few discs until they were 
able to correlate the numbers on the board with their own findings. While a future presentation 
could have students do more number manipulation, students were, nonetheless, able to arrive at 
a general enough method to find the number of moves required for any given number of discs.

Students were then put in groups of two or three. Each group was given the task of solving 
the Tower of Hanoi problem using three discs. The smallest number of moves for any group was 
9. Using the website Math is Fun, students were shown that the least number of moves required 
is 7 [6]. They were then given a chance to try again. Only one group was successful.

This was repeated using four discs. The least number of moves for any group was 16; the 
smallest number possible is 15.

Students were then asked to return to their seats. Using what they learned during their 
group collaboration, students were asked if they noticed any patterns on how the problem 
was to be solved for any given number of discs. This took some effort and a number of visual 
demonstrations, including the white board, the Math is Fun website, and the discs students 
used. Through discussion and guidance, students were able to see that in the case of four 
discs, they first had to reconstruct the case of three discs.

Finally, we investigated the numbers. To point students in the right direction, they were 
told to look at the previous table and the relationship between the numbers on the left hand 
column and their corresponding number on the right hand column. They were told to think 
of the numbers on the right hand column in terms of exponents with a base of two. Students 
were confused, as they correctly noticed that the right hand column had only odd numbers, 
but what they were asked to do resulted in only even numbers.

Students were then given the next hint to the answer; they were told to subtract a very 
specific number from each of the exponentiated numbers on the right hand column. After quite 
some difficulties, someone yelled out, “Subtract one!” Suddenly, the lightbulb went on for many 
students in the room, and they were able to notice the following pattern in the numbers:

Discs
1 1
2 3

Moves

Discs
1 1 = 21 - 1

7 = 23 - 1
1 = 22 - 1

15 = 24 - 1

2
3
4

Moves
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The following is problem 1018 from the Paul Erdos In- ternational Math Challenge problem 
set, formerly the ABACUS International Math Challenge, for March 2015:

Four kids are building sand castles. Everybody’s castle is a different height. They made 
the following true statements

Fanny: My castle is not higher than Suzanne’s. 
Eva: Suzanne’s castle is not smaller than Katie’s. 
Katie: Eva built a smaller castle than Fanny. 
Suzanne: Eva’s castle is not the smallest.

Put the castles in an increasing order of their heights [1].

In preparing to present this problem, the following, incorrect ordering was made:

Suzanne 
Fanny 
Katie 
Eva

The ordering

Suzanne 
Fanny 
Katie

was constructed from the first and second statements. However, this is a hasty 
assumption, as we know Katie’s castle size relative to Suzanne’s but not rela-tive to Fanny’s.

To help students think more critically, they were give the following pre-problem, which 
they answered correctly: If A and B are friends and A and C are friends, do we know that B 
and C are friends?

Students were put into groups and given four stacks of blocks, each stack was of different 
color to represent each castle. Using only the first statement, students were shown one way to 
use the blocks.

After observing each group, it was apparent that the phrasing of the statements was 
giving students difficulty. Students were asked to, as a class, rewrite the statements for easier 
understanding:

Fanny: Suzanne’s castle is taller than mine. 
Eva: Suzanne’s castle is taller than Katie’s. 
Katie: Fanny built a taller castle than Eva’s. 
Suzanne: Eva’s castle is not the smallest.

More students had success after this rephrasing. A few groups struggled using the blocks; 
they decided to work on paper. Once students were done working with their group, we had a 
class discussion where students were required to justify their solutions.

3. ABACUS March 2015, Problem 1018
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While time would have been saved on this exercise by having students rephrase the 
statements first, it was very instructive for students to see the importance of rewriting a 
problem, rather than tackling a problem that is not understood. This exercise also helped 
students gain a better understanding of methods that work for them individually; some 
students worked well with pencil and paper whereas other benefiitted from using blocks. 
Moreover, as the Common Core standards emphasize a more thorough understanding of 
the logic and reasoning of mathematics, problems such as these tackle the Common Core 
Standards for Mathematical Practices (CCSS.Math.Practice.MP3) [7]. Through these types of 
problems, students are learning to construct logical arguments and find evidence to support 
their conjectures.

Understanding fractals proved to be an engaging focus for our group. The topic of powers 
of numbers led students to confuse powers with multiplication. The following problem, taken 
from Natasha Rozhkovskaya’s Math Circles for Elementary School Students, highlighted the 
understanding of fractals and power of numbers [8].

The lesson began by having students analyze the following image as it was being drawn 
on the board:

Students were asked if they noticed any reoccurring patterns as the tree was being drawn. 
The tree was constructed by first drawing the vertical stem and then two branches parting 
separate directions. To each branch we added two more branches, just as in the figure above. Then 
the fractal tree design taken from Koos Verhoeff and his foundation was displayed on the overhead:

Students were given the following information:

Assume that the tree grows so that the new branches appear at the end of each year. At 
the end of the first year, two new branches grow on the stem. At the end of the second year, 
four new branches grow from those two, and so on.

We posed the following question: Would it be possible to determine the age of this tree?
A few students fumbled with the question with an, “I have no idea!”, while others 

mumbled about having to recreate the tree. That is what we did. We divided the class into 
six groups of two. Four groups garbled with the posed question by using connecting blocks 

4. About Fractals and the Powers of Numbers
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to build their trees and determine the number of branches after five years, then seven, then 
ten. The other groups used the white board and dry erase markers to build their trees and, 
similarly, figure out the number of branches from year to year. We had to remind students 
to write the number of branches of the tree on their papers or white board as they moved 
along from year to year, as it was causing students difficulty remembering. Students who used 
connecting blocks took longer to arrive to their conclusion in comparison to those who used 
the white board. Interestingly, however, using the technique in the previous figure, all students 
confidently arrived to the conclusion that there were 30 branches after the fifth year.

2 branches (red) after the first year
4 branches (blue) after the second year
8 branches (green) after the third year
16 branches (orange) after the fourth year . . .

To some groups a simple, “You are very close, try again,” was enough to get them to 
recreate their tree more carefully. Some groups were able to find that there are 32 branches 
after the fifth year and were quietly told to advance to the next given year. To make sure all 
groups had figured out the answer on their own, they were asked to explain how they arrived 
at their conclusion.

A particular female student asked if this activity had any relation to the concept of 
exponents. It was fascinating to see how this activity stirred this second grader’s mind to 
break outside the borders to relate it to what she had been previously taught. The student’s 
curiosity sparked an interest in other students’ minds. The lesson was then led toward a brief 
explanation on the board to relate fractals to exponents in the following manner:

It was explained that 2 · 2 · 2 · 2 · 2 can also be written as 25, where 5 is the exponent. 
Other cases were shown to give them a better understanding of what exponents are. They 
were thrilled to find that by using the idea of exponents they could find a method to 
determine the number of branches of the tree after 100 years without actually drawing the 
tree. As the Common Core State Standards push forth the importance of recognizing patterns 
with numbers (CCSS.MATH.CONTENT.3.OA.D.9), our activities enabled our students to 
make these types of connections. Students are being stimulated to recognize patterns between 
exponents and the operation of multiplication [3].

A big challenge with the groups that were working with connecting blocks was 
distinguishing the number of branches that grew from year to year. Because of the lack of 
quantity of blocks in each color, students were using different colored blocks for one branch. 
This activity could have proved more useful if students were provided bigger quantities of each 
color for easier distinctions. Nevertheless, students enjoyed working together to build their 

2 = 2
4 = 2 · 2
8 = 2 · 2 · 2

...

32 = 2 · 2 · 2 · 2 · 2
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The next problem, taken from Natasha Rozhkoyskaya’s Math Circles for Elementary School 
Students, deals with logic and animals.

Problem: Little Squirrel is having a birthday party today. Squirrel’s six friends Owl, Deer, 
Rabbit, Lynx, Mouse, and Fox came to celebrate.

The guests sat around the table so that:

5. Logic and Animals

To begin this lesson, the presenter read the problem and then asked, how many animals 
will be sitting around the table? Immediately students responded “six,” but then changed their 
response to “seven.” Indeed, there are seven animals sitting around the table including the 
host, Squirrel. Seven volunteers were called to stand in a circle in the front of the classroom. 
Each student was given one of the animals to act out at the pretend birthday party. As only 
few students knew what a Lynx is, it was explained that it is a wild cat. The presenter may 
choose to change the animal to something more familiar, but it must be kept in mind that 
there is a clue that deals with predators of the mouse. The volunteers impersonated their 
given animal, and then the they sat in a circle in the pretend chairs that were numbered from 
one to seven as the following figure depicts:

Slowly and clearly, the presenter read the first clue from the problem: Owl’s neighbors 
were Fox and Lynx. The presenter asked the Owl, Fox, and Lynx to raise their hand so that 
the rest of the class knew who was which animal. This was done for every animal in each 
round. As the presenter read the clue again and asked for input from the audience, the 

Owl’s neighbors were Fox and Lynx

Squirrel took chair number four near Rabbit

Mouse refused to sit next to any predator

There were two guests seated between Owl and Squirrel.

Lynx chose chair number two.

• 

•

•

•

•

Question: Where did Deer sit? [8]

fractal tree and determine the number of branches of the tree after any given year. Students 
found the activity easier and faster when using the white board but stimulating using the 
connecting blocks.
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Working with gifted children was a privilege and a challenge. Their above average knowledge 
of mathematics allows for comprehensive exploration. The challenges, then, come in having 
thorough under- standing of students’ abilities.

The problems discussed in this paper are suitable for gifted students because they 
involve layers of under- standing and logic; they were not mere skill and drill. Additionally, 
these involved engaging, hands-on activities which ultimately led to higher understanding of 
mathematical concepts, as is the goal of Common Core. Moreover, the problems presented 
use logic and critical thinking skills that will be required for success for those who choose to 
pursue a path in mathematics or other STEM fields.

6. Final Thoughts

volunteers began swapping places. The audience either disagreed or agreed and was asked 
what movements the volunteers should do instead. The volunteers would then move around 
the circle accordingly. This pattern was followed after the presenter read each clue.

Another clue read: Mouse refused to sit next to any predator. Most students knew what 
animals would be considered a predator of the mouse and were quick to eliminate them. 
However, to ensure all students are follow along, it is suggested that the presenter ask the 
class what animals are considered predators of the mouse.

This activity took some time as the audience and volunteers gave input on where the 
animals should be seated. After the volunteers made their switch once the clues were read, 
the audience either disagreed or agreed with the move. After the audience gave their input 
the same clue was read again, and many times rearrangements had to be made. None of the 
clues had said anything about where Deer should sit; how- ever, in the end, the volunteers and 
clever audience figured out Deer’s place on the table – number six. 

Students seemed to really enjoy this problem as it brought good humor into the room. 
All students were active participants whether they had been volunteers or audience members. 
After this, students were eager to participate in more activities that involved portraying 
animals or performing skits. Furthermore, the nature of this problem works splendidly in 
continuing to help students develop the ability to “construct viable arguments and critique the 
reasoning of others,” as specified by the Common Core Standards for Mathematical Practices 
(CCSS.Math.Practice.MP3) [7].
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Back to Square One

Brian Laverty
Advisor: Dr. Thomas Murphy

Abstract

For this research, I have found contradictions to the claim made in the article On Packing 
of Squares and Cubes by A. Meir and L. Moser. The claim was that there are exactly two 
solutions to the equation 12 + 22 + . . . + n2 = m2 for integers n and m, namely (n,m) = {(1,1), 
(24,70)}. I found multiple (additional) solutions to this equation—the next solution appearing 
with n in the two millions.

Further, using the solution 12 + 22 + . . . + 242 = 702, I have been trying to find a perfect 
squared square. That is, a 70 × 70 square dissected into squares 1 × 1, 2 × 2, . . . , 24 × 24. 
There have been claims that such a dissection is not possible, but no proof has been provided. 
In order to make this problem more approachable, first suppose that there is such a dissection 
of the 70 × 70 square. Then the lengths of the squares on the edge must sum to 70. I created 
a code in MATLAB to provide all possible combinations of 1, 2, . . . , 24 that sum to 70. I 
have reduced this list considerably and hope to reduce it enough to prove that there is no such 
dissection, or find the dissection—if it does exist.
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(r)-Pancyclic, (r)-Bipancyclic and Oddly (r)-Bipancyclic Graphs*

Abstract

A graph with v vertices is (r)-pancyclic if it contains precisely r cycles of every length from 
3 to v. A bipartite graph with even number of vertices v is said to be (r)-bipancyclic if it 
contains precisely r cycles of each even length from 4 to v. A bipartite graph with odd number 
of vertices v and minimum degree at least 2 is said to be oddly (r)- bipancyclic if it contains 
precisely r cycles of each even length from 4 to v − 1. In this paper, using a computer search, 
we classify all (r)-pancyclic and (r)-bipancyclic graphs, r ≥ 2, with v vertices and at most v + 
5 edges. We also classify all oddly (r)-bipancyclic graphs, r ≥ 1, with v vertices and at most v 
+ 4 edges.
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Edge Magic Total Labelings*

Lisa Mueller

Jackie Emrich

Nick Bohall

Advisor: Dr. Abdollah Khodkar

Kajal Chokshi

Abstract

Edge-Magic Total Labelings

A graph with v vertices and e edges has an edge-magic total labeling if the vertices and edges 
can be labeled with the numbers 1 through v + e such that the sum of any edge and its two 
adjacent vertices adds up to the same number. The main focus for this research project has 
been to explore different types of graphs to see which are edge-magic in general or for an 
entire spectrum of possible sums according to how many vertices and edges a given graph 
contains.

Before we delve into what an edge-magic total labeling is, we first need to establish a few more 
definitions about magic graphs in general. A connected graph is called semi-magic if the edges can 
be labeled with integers such that the sum of all of the edges incident with each vertex adds up 
to the same number. [?] A graph is simply called magic if all of the edges are labeled with distinct 
numbers. [?] The property that we focused on for the entirety of our research was finding which 
graphs are edge-magic, meaning that the sum each edge and its two adjacent vertices add up to 
the same number [?]. In particular, we did research on finding which graphs had an edge-magic 
total labelings. This means that for graphs with v vertices and e edges, the graph turns out to be 
edge-magic, where only the numbers 1 through v + e are used. [?]

There are many types of graphs that have edge-magic total labelings, such as complete 
graphs, bipartite graphs, certain types of trees, cycles, paths, and more. [?] However, there are 
still many different types of graphs that have not had any published material about whether an 
edge-magic total labeling exists for them or not. Additionally, for graphs that were already known 
to be edge-magic, there was not much research done determining how many different sums on the 
possible spectrum of constants that each edge and its adjacent vertices can add up to worked [in 
this case, they would range from 1 + 2 + v + e to 2(v + e)]. Although we discovered some of these 
things by hand, we created and perfected a computer pro- gram via Python in which one enters 
the vertices and edges of a graph, and every possible labeling is outputted into a separate file. This 
has mainly helped us in finding patterns in the labelings, as well as seeing whether or not certain 
graphs are edge-magic for all possible sums. For our research, we mainly focused on three different 
types of graphs: complete tripartite graphs, spiders, and odd-cycle kites.

Department of Mathematics, California State University, Fullerton

 Department of Mathematics, Loyola University Maryland

Department of Mathematics, University of Washington

Department of Mathematics, University of West Georgia

 Department of Mathematics, Loyola University Chicago



154

Edge-Magic Programming via Python

Edge-Magic Complete Tripartite Graphs

Conjecture

Proof

The program that we created uses recursive backtracking to try and find every possible 
labeling. This program is not as efficient as it could be, especially since it prints out many 
isomorphic labelings. However, we can make the program more efficient by using a concept 
similar to a Sidon sequence (a sequence with n terms 0 < a1 < a2 < . . . < an such that 
ai + aj = ak + al where i, j, k, l are all different) and restricting the sums [?]. First, as we know 
that the range of possible magic sums is between 1 + 2 + (v + e) and 2(v + e), we attempt to 
find all of the labelings for a given sum, then move on. Next we modify the concept of a Sidon 
sequence, only imposed that if there is an edge between two vertices, the sum of the vertices 
is not repeated elsewhere in the graph. Using this concept, we can eliminate many labelings 
early on. However, this is not a sufficient condition for an edge-magic total labeling, and the 
program continues on and assigns edge values for the given sum and then checks to see if any 
label is missing or repeated. If all of these things are satisfied, it then prints out the labelings 
to a file in an adjacency matrix.

For the majority of our research, we sought out to find patterns in complete tripartite graphs 
of the form K1,m,n, with m, n ≥ 1. There are many different possible magic sums that these 
graphs could have, ranging from 3 + m + n to 2(m + n). In the beginning, we conjectured 
that all complete tripartite graphs are edge-magic, and so we began to try proving this for 
smaller groups of complete tripartite graphs. First, we wanted to look at graphs of the form 
K1,m,n, and so far, we have been able to prove that all of these graphs are edge-magic for their 
minimum sums. (The proof is provided below.) After proving this, we changed our pace to 
figuring out which graphs worked for the spectrum of possible sums that each graph could have.

K1,m,n, has an edge-magic total labeling for m, n ≥ 1, with sum k = 4 + 2m + 2n + mn (its 
minimum possible sum).

Consider the complete tripartite graph K1,m,n, with m, n ≥ 1. WLOG, assume m ≥ n. Note 
thatK1,m,n has 1 + m + n vertices and m + n + mn edges. So we need to label the vertices 
and the edges with the numbers 1 through 1 + 2m + 2n + mn such that the sum of the 
labels of each edge and its two adjacent vertices adds up to k = 4 + 2m + 2n + mn. For 
convenience, we will refer to the solitary vertex with the highest degree as v, the m vertices as 
x1, x2, . . . , xm, and the n vertices as y1, y2, . . . , yn. Consider the following labeling:

Label v with the value 1.

Label x1, x2, . . . , xm with 2, 3, . . . , m + 1, respectively.

Label y1, y2, . . . , yn with m + 2, 2(m + 2), . . . ,n(m + 2), respectively.

Label each edge with the appropriate number such that each edge and its adjacent vertices 
add up to the sum k. (For example, the edge connecting 1 and 2 will be 1 + 2m + 2n + mn; 
the edge connecting 1 and 3 will be 2m + 2n + mn; and so on.)

• 

•

•

•
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In order to prove that this is an edge-magic total labeling, we need to verify that (1) 
the vertices and the edges share no common values, and that (2) no two edges have the same 
label. Note that we do not need to check to see if the vertices are labeled differently since we 
specifically assigned each vertex a different value.

Let us look at the different values that are assigned to each edge by the way we labeled 
our vertices:

As we can see from this list, the numbers 1 through m + 1 never appear as an edge 
value. Similarly, we can see that all multiples of m + 2 are not found within the edge values, 
as well. This proves (1) since all of the vertex values and edge values are distinct.

Now, we need to show that no two edges have the same value. Clearly, focusing on one 
vertex at a time, all of its adjacent edges will have different values since the vertices to which 
the edges are connected are all distinct. So, we only have three cases to show. (For convenience, 
we will say v belongs to the set A; x1, x2, . . . , xm belong to the set B; and y1, y2, . . . , yn belong 
to the set C, where                contains all the vertices of K1,m,n and       

WNTS                  R1 consists of m consecutively descending numbers, with 2 + m + 
2n + mn as its lowest value. S1 consists of n descending numbers, whose gaps between 
consecutive terms equal m + 2, with 1 + m + 2n + mn as its highest value. Since r ≥ 2 
+ m + 2n + mn for all                                                                    for all 
possible values of r and s. Thus                  as needed. Therefore all edges connecting A 
to B are distinct from the edges connecting A to C.

Case 1: WNTS all edges connecting A to B are distinct from the edges connecting A to C. 
From our list of edges above, we are com- paring the following sets of numbers:

The edges connecting v with x1, x2, . . . , xm are labeled with the values 1 + 2m + 2n + mn, 
2m + 2n + mn, . . . , 2 + m + 2n + mn, respectively.

The edges connecting v with y1, y2, . . . , yn are labeled with the values 1 + m + 2n + mn, 
−1 + 2n + mn, −3 − m + 2n + mn, . . . , 3 + 2m, respectively.

The edges connecting x1 with y1, y2, . . . , yn are labeled with the values m + 2n + mn, −2 
+ 2n + mn, − 4 − m + 2n + mn, . . . , 2 + 2m, respectively.

The edges connecting x2 with y1, y2, . . . , yn are labeled with the values −1 + m + 2n + 
mn, −3 + 2n + mn, −5 − m + 2n + mn, . . . , 1 + 2m, respectively.

The edges connecting xm with y1, y2, . . . , yn are labeled with the values 1 + 2n + mn, −m 
+ 2n + mn, − 1 − 2m + 2n + mn , . . . , 3 + m, respectively.

• 

•

•

•

•

...

• Case 1: WNTS all edges connecting A to B are distinct from the
edges connecting A to C. From our list of edges above, we are com-
paring the following sets of numbers:

– R1 = 1 + 2m+ 2n+mn, 2m+ 2n+mn, . . . , 2 +m+ 2n+mn,
and

– S1 = 1 +m+ 2n+mn,−1 + 2n+mn, . . . , 3 + 2m, where
|R1| = m and |S1| = n.

WNTS R1 ∩ S1 = ∅.R1 consists of m consecutively descending num-
bers, with 2 +m+ 2n+mn as its lowest value. S1 consists of n de-
scending numbers, whose gaps between consecutive terms equalm+2,
with 1+m+2n+mn as its highest value. Since r ≥ 2+m+2n+mn
for all r ∈ R, and s ≤ 1+m+2n+mn for all s ∈ S, then r �= s for all
possible values of r and s. Thus R1 ∩ S1 = ∅, as needed. Therefore
all edges connecting A to B are distinct from the edges connecting A
to C.

• Case 2: WNTS all edges connecting B to A are distinct from the
edges connecting B to C. Note that there are m vertices in B, where
each vertex is adjacent to n+1 distinct edges. Because the difference
between each consecutive vertex in B is 1, then the difference between
each edge connecting every consecutive vertex in B to a vertex in C
will also differ by 1. WLOG, we will test to make sure all of x1’s
edges are distinct. (The proof can then be performed recursively m
times with each vertex, subtracting every edge value by 1 with each
respective vertex.) From our list of edges above, we are comparing
the following sets of numbers:

– R2 = 2 + 2m+ 2n+mn, and

– S2 = m+ 2n+mn,−2 + 2n+mn, . . . , 2 + 2m, where |R2| = 1
and |S2| = n

WNTS R2∩S2 = ∅. S2 consists of n descending numbers, whose gaps
between consecutive terms equal m+2, with m+2n+mn as its high-
est value. Since r > m+ 2n+mn for r ∈ R2 and s ≤ m+ 2n+mn
for all s ∈ S2, then r �= s for all possible values of r and s. Thus
R2 ∩ S2 = ∅, as needed. Therefore, all edges connecting B to A are
distinct from the edges connecting B to C.

• Case 3: WNTS all edges connecting C to A are distinct from the
edges connecting C to B. Note that there are n vertices in C, where

5

• Case 1: WNTS all edges connecting A to B are distinct from the
edges connecting A to C. From our list of edges above, we are com-
paring the following sets of numbers:

– R1 = 1 + 2m+ 2n+mn, 2m+ 2n+mn, . . . , 2 +m+ 2n+mn,
and

– S1 = 1 +m+ 2n+mn,−1 + 2n+mn, . . . , 3 + 2m, where
|R1| = m and |S1| = n.

WNTS R1 ∩ S1 = ∅.R1 consists of m consecutively descending num-
bers, with 2 +m+ 2n+mn as its lowest value. S1 consists of n de-
scending numbers, whose gaps between consecutive terms equalm+2,
with 1+m+2n+mn as its highest value. Since r ≥ 2+m+2n+mn
for all r ∈ R, and s ≤ 1+m+2n+mn for all s ∈ S, then r �= s for all
possible values of r and s. Thus R1 ∩ S1 = ∅, as needed. Therefore
all edges connecting A to B are distinct from the edges connecting A
to C.

• Case 2: WNTS all edges connecting B to A are distinct from the
edges connecting B to C. Note that there are m vertices in B, where
each vertex is adjacent to n+1 distinct edges. Because the difference
between each consecutive vertex in B is 1, then the difference between
each edge connecting every consecutive vertex in B to a vertex in C
will also differ by 1. WLOG, we will test to make sure all of x1’s
edges are distinct. (The proof can then be performed recursively m
times with each vertex, subtracting every edge value by 1 with each
respective vertex.) From our list of edges above, we are comparing
the following sets of numbers:

– R2 = 2 + 2m+ 2n+mn, and

– S2 = m+ 2n+mn,−2 + 2n+mn, . . . , 2 + 2m, where |R2| = 1
and |S2| = n

WNTS R2∩S2 = ∅. S2 consists of n descending numbers, whose gaps
between consecutive terms equal m+2, with m+2n+mn as its high-
est value. Since r > m+ 2n+mn for r ∈ R2 and s ≤ m+ 2n+mn
for all s ∈ S2, then r �= s for all possible values of r and s. Thus
R2 ∩ S2 = ∅, as needed. Therefore, all edges connecting B to A are
distinct from the edges connecting B to C.

• Case 3: WNTS all edges connecting C to A are distinct from the
edges connecting C to B. Note that there are n vertices in C, where

5

• Case 1: WNTS all edges connecting A to B are distinct from the
edges connecting A to C. From our list of edges above, we are com-
paring the following sets of numbers:

– R1 = 1 + 2m+ 2n+mn, 2m+ 2n+mn, . . . , 2 +m+ 2n+mn,
and

– S1 = 1 +m+ 2n+mn,−1 + 2n+mn, . . . , 3 + 2m, where
|R1| = m and |S1| = n.

WNTS R1 ∩ S1 = ∅.R1 consists of m consecutively descending num-
bers, with 2 +m+ 2n+mn as its lowest value. S1 consists of n de-
scending numbers, whose gaps between consecutive terms equalm+2,
with 1+m+2n+mn as its highest value. Since r ≥ 2+m+2n+mn
for all r ∈ R, and s ≤ 1+m+2n+mn for all s ∈ S, then r �= s for all
possible values of r and s. Thus R1 ∩ S1 = ∅, as needed. Therefore
all edges connecting A to B are distinct from the edges connecting A
to C.

• Case 2: WNTS all edges connecting B to A are distinct from the
edges connecting B to C. Note that there are m vertices in B, where
each vertex is adjacent to n+1 distinct edges. Because the difference
between each consecutive vertex in B is 1, then the difference between
each edge connecting every consecutive vertex in B to a vertex in C
will also differ by 1. WLOG, we will test to make sure all of x1’s
edges are distinct. (The proof can then be performed recursively m
times with each vertex, subtracting every edge value by 1 with each
respective vertex.) From our list of edges above, we are comparing
the following sets of numbers:

– R2 = 2 + 2m+ 2n+mn, and

– S2 = m+ 2n+mn,−2 + 2n+mn, . . . , 2 + 2m, where |R2| = 1
and |S2| = n

WNTS R2∩S2 = ∅. S2 consists of n descending numbers, whose gaps
between consecutive terms equal m+2, with m+2n+mn as its high-
est value. Since r > m+ 2n+mn for r ∈ R2 and s ≤ m+ 2n+mn
for all s ∈ S2, then r �= s for all possible values of r and s. Thus
R2 ∩ S2 = ∅, as needed. Therefore, all edges connecting B to A are
distinct from the edges connecting B to C.

• Case 3: WNTS all edges connecting C to A are distinct from the
edges connecting C to B. Note that there are n vertices in C, where

5

• Case 1: WNTS all edges connecting A to B are distinct from the
edges connecting A to C. From our list of edges above, we are com-
paring the following sets of numbers:

– R1 = 1 + 2m+ 2n+mn, 2m+ 2n+mn, . . . , 2 +m+ 2n+mn,
and

– S1 = 1 +m+ 2n+mn,−1 + 2n+mn, . . . , 3 + 2m, where
|R1| = m and |S1| = n.

WNTS R1 ∩ S1 = ∅.R1 consists of m consecutively descending num-
bers, with 2 +m+ 2n+mn as its lowest value. S1 consists of n de-
scending numbers, whose gaps between consecutive terms equalm+2,
with 1+m+2n+mn as its highest value. Since r ≥ 2+m+2n+mn
for all r ∈ R, and s ≤ 1+m+2n+mn for all s ∈ S, then r �= s for all
possible values of r and s. Thus R1 ∩ S1 = ∅, as needed. Therefore
all edges connecting A to B are distinct from the edges connecting A
to C.

• Case 2: WNTS all edges connecting B to A are distinct from the
edges connecting B to C. Note that there are m vertices in B, where
each vertex is adjacent to n+1 distinct edges. Because the difference
between each consecutive vertex in B is 1, then the difference between
each edge connecting every consecutive vertex in B to a vertex in C
will also differ by 1. WLOG, we will test to make sure all of x1’s
edges are distinct. (The proof can then be performed recursively m
times with each vertex, subtracting every edge value by 1 with each
respective vertex.) From our list of edges above, we are comparing
the following sets of numbers:

– R2 = 2 + 2m+ 2n+mn, and

– S2 = m+ 2n+mn,−2 + 2n+mn, . . . , 2 + 2m, where |R2| = 1
and |S2| = n

WNTS R2∩S2 = ∅. S2 consists of n descending numbers, whose gaps
between consecutive terms equal m+2, with m+2n+mn as its high-
est value. Since r > m+ 2n+mn for r ∈ R2 and s ≤ m+ 2n+mn
for all s ∈ S2, then r �= s for all possible values of r and s. Thus
R2 ∩ S2 = ∅, as needed. Therefore, all edges connecting B to A are
distinct from the edges connecting B to C.

• Case 3: WNTS all edges connecting C to A are distinct from the
edges connecting C to B. Note that there are n vertices in C, where

5

• Label each edge with the appropriate number such that each edge and
its adjacent vertices add up to the sum k. (For example, the edge
connecting 1 and 2 will be 1 + 2m+ 2n+mn; the edge connecting 1
and 3 will be 2m+ 2n+mn; and so on.)

In order to prove that this is an edge-magic total labeling, we need to verify
that (1) the vertices and the edges share no common values, and that (2)
no two edges have the same label. Note that we do not need to check to
see if the vertices are labeled differently since we specifically assigned each
vertex a different value.

Let us look at the different values that are assigned to each edge by the
way we labeled our vertices:

• The edges connecting v with x1, x2, . . . , xm are labeled with the values
1+ 2m+2n+mn, 2m+2n+mn, . . . , 2+m+2n+mn, respectively.

• The edges connecting v with y1, y2, . . . , yn are labeled with the values
1 + m + 2n + mn,−1 + 2n + mn,−3 − m + 2n + mn, . . . , 3 + 2m,
respectively.

• The edges connecting x1 with y1, y2, . . . , yn are labeled with the values
m+2n+mn,−2+2n+mn,−4−m+2n+mn, . . . , 2+2m, respectively.

• The edges connecting x2 with y1, y2, . . . , yn are labeled with the values
−1 +m + 2n +mn,−3 + 2n +mn,−5 −m + 2n +mn, . . . , 1 + 2m,
respectively.
...

• The edges connecting xm with y1, y2, . . . , yn are labeled with the val-
ues 1 + 2n + mn,−m + 2n + mn,−1 − 2m + 2n + mn, . . . , 3 + m,
respectively.

As we can see from this list, the numbers 1 through m + 1 never appear
as an edge value. Similarly, we can see that all multiples of m+ 2 are not
found within the edge values, as well. This proves (1) since all of the vertex
values and edge values are distinct.

Now, we need to show that no two edges have the same value. Clearly,
focusing on one vertex at a time, all of its adjacent edges will have different
values since the vertices to which the edges are connected are all distinct.
So, we only have three cases to show. (For convenience, we will say v be-
longs to the set A; x1, x2, . . . , xm belong to the set B; and y1, y2, . . . , yn
belong to the set C, where A ∪ B ∪ C contains all the vertices of K1,m,n

and A ∩B ∩ C = ∅.)
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Case 2: WNTS all edges connecting B to A are distinct from the edges connecting B to C. 
Note that there are m vertices in B, where each vertex is adjacent to n + 1 distinct 
edges. Because the difference between each consecutive vertex in B is 1, then the 
difference between each edge connecting every consecutive vertex in B to a vertex in C 
will also differ by 1. WLOG, we will test to make sure all of x1’s edges are distinct. (The 
proof can then be performed recursively m times with each vertex, subtracting every edge 
value by 1 with each respective vertex.) From our list of edges above, we are comparing 
the following sets of numbers:

Case 3: WNTS all edges connecting C to A are distinct from the edges connecting C to B. 
Note that there are n vertices in C, where each vertex is adjacent to m+1 edges. Because 
the difference between each consecutive vertex in C is m + 2, then the difference between 
each edge connecting every consecutive vertex in C to a vertex in B will also differ by m 
+ 2. WLOG, we will test to make sure all of y1’s edges are distinct. (The proof can then 
be performed recursively n times with each vertex, subtracting every edge value by m + 2 
with each respective vertex.) From our list of edges above, we are comparing the following 
sets of numbers:

WNTS                     consists of n descending numbers, whose gaps between consecutive 
terms equal m + 2, with m + 2n + mn as its highest value. Since r > m + 2n + mn for 
r                                       for all                            for all possible values of r and s. 
Thus                   as needed. Therefore, all edges connecting B to A are distinct from the 
edges connecting B to C.

WNTS                     consists of m descending consecutive numbers, with m + 2n + mn 
as its highest value. Since r > m + 2n + mn for                                                       , 
then         for all possible values of r and s. Thus                  as needed. Therefore, all 
edges connecting C to A are distinct from the edges connecting C to B. Note that the set 
of all edges connecting A to B is equivalent to the set of all edges connecting B to A. (The 
same can be said for A to C and C to A, and B to C and C to B.) So, these three cases 
combined have essentially proven that all of the edges between A and B, B and C, and A 
and C all are assigned distinct values. This proves (2). Since both (1) and (2) have been 
proven, then the labeling provided for K1,m,n above is in fact an edge-magic total labeling 
for its minimum possible sum. Thus we have proven the above conjecture.

• Case 1: WNTS all edges connecting A to B are distinct from the
edges connecting A to C. From our list of edges above, we are com-
paring the following sets of numbers:

– R1 = 1 + 2m+ 2n+mn, 2m+ 2n+mn, . . . , 2 +m+ 2n+mn,
and

– S1 = 1 +m+ 2n+mn,−1 + 2n+mn, . . . , 3 + 2m, where
|R1| = m and |S1| = n.

WNTS R1 ∩ S1 = ∅.R1 consists of m consecutively descending num-
bers, with 2 +m+ 2n+mn as its lowest value. S1 consists of n de-
scending numbers, whose gaps between consecutive terms equalm+2,
with 1+m+2n+mn as its highest value. Since r ≥ 2+m+2n+mn
for all r ∈ R, and s ≤ 1+m+2n+mn for all s ∈ S, then r �= s for all
possible values of r and s. Thus R1 ∩ S1 = ∅, as needed. Therefore
all edges connecting A to B are distinct from the edges connecting A
to C.

• Case 2: WNTS all edges connecting B to A are distinct from the
edges connecting B to C. Note that there are m vertices in B, where
each vertex is adjacent to n+1 distinct edges. Because the difference
between each consecutive vertex in B is 1, then the difference between
each edge connecting every consecutive vertex in B to a vertex in C
will also differ by 1. WLOG, we will test to make sure all of x1’s
edges are distinct. (The proof can then be performed recursively m
times with each vertex, subtracting every edge value by 1 with each
respective vertex.) From our list of edges above, we are comparing
the following sets of numbers:

– R2 = 2 + 2m+ 2n+mn, and

– S2 = m+ 2n+mn,−2 + 2n+mn, . . . , 2 + 2m, where |R2| = 1
and |S2| = n

WNTS R2∩S2 = ∅. S2 consists of n descending numbers, whose gaps
between consecutive terms equal m+2, with m+2n+mn as its high-
est value. Since r > m+ 2n+mn for r ∈ R2 and s ≤ m+ 2n+mn
for all s ∈ S2, then r �= s for all possible values of r and s. Thus
R2 ∩ S2 = ∅, as needed. Therefore, all edges connecting B to A are
distinct from the edges connecting B to C.

• Case 3: WNTS all edges connecting C to A are distinct from the
edges connecting C to B. Note that there are n vertices in C, where
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each vertex is adjacent to m+1 edges. Because the difference between
each consecutive vertex in C ism+2, then the difference between each
edge connecting every consecutive vertex in C to a vertex in B will
also differ by m+2. WLOG, we will test to make sure all of y1’s edges
are distinct. (The proof can then be performed recursively n times
with each vertex, subtracting every edge value by m + 2 with each
respective vertex.) From our list of edges above, we are comparing
the following sets of numbers:

– R3 = 2 + 2m+ 2n+mn and

– S3 = m+ 2n+mn,−1 +m+ 2n+mn, . . . , 1 + 2n+mn, where
|R3| = 1 and |S3| = m

WNTS R3∩S3 = ∅. S3 consists ofm descending consecutive numbers,
with m + 2n +mn as its highest value. Since r > m + 2n +mn for
r ∈ R3 and s ≤ m+2n+mn for all s ∈ S3, then r �= s for all possible
values of r and s. Thus R3 ∩ S3 = ∅, as needed. Therefore, all edges
connecting C to A are distinct from the edges connecting C to B.
Note that the set of all edges connecting A to B is equivalent to the set
of all edges connecting B to A. (The same can be said for A to C and
C to A, and B to C and C to B.) So, these three cases combined have
essentially proven that all of the edges between A and B, B and C,
and A and C all are assigned distinct values. This proves (2). Since
both (1) and (2) have been proven, then the labeling provided for
K1,m,n above is in fact an edge-magic total labeling for its minimum
possible sum. Thus we have proven the above conjecture.

Regarding graphs of the form K1,1,n, with n ≥ 1, our program discov-
ered that K1,1,1 (this is just a standard 3-cycle), K1,1,2, K1,1,3, and K1,1,4

are edge-magic for every possible sum (examples of every possible sum for
K1,1,2 are provided in Figure 1 on page 7.). Because of this information, we
conjecture that all graphs of the form K1,1,n are edge-magic for the entire
spectrum of possible magic sums, but we still have yet to provide a proof.
Regarding graphs of the form K1,2,n, with n ≥ 2, K1,2,3 has been the only
graph that our program has determined to be edge-magic for every possible
sum. (Examples of each sum are provided in Figure 2 on page 7.) Interest-
ingly, K1,2,2 was not edge-magic for its second lowest and highest sums, and
K1,2,4 was not edge-magic for its second lowest and highest, fourth lowest
and highest, and eighth lowest and highest sums. Because of this pattern,
we conjectured that no complete tripartite graph of the form K1,2,n, with
n even, is edge-magic for its second lowest and highest sums, but the proof
turned out to be much more difficult that we originally anticipated. We
also have the conjecture that the possible sums that will not work for the
various graphs of this type will be the 2kth lowest and highest sums, for

6
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are edge-magic for every possible sum (examples of every possible sum for
K1,1,2 are provided in Figure 1 on page 7.). Because of this information, we
conjecture that all graphs of the form K1,1,n are edge-magic for the entire
spectrum of possible magic sums, but we still have yet to provide a proof.
Regarding graphs of the form K1,2,n, with n ≥ 2, K1,2,3 has been the only
graph that our program has determined to be edge-magic for every possible
sum. (Examples of each sum are provided in Figure 2 on page 7.) Interest-
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we conjectured that no complete tripartite graph of the form K1,2,n, with
n even, is edge-magic for its second lowest and highest sums, but the proof
turned out to be much more difficult that we originally anticipated. We
also have the conjecture that the possible sums that will not work for the
various graphs of this type will be the 2kth lowest and highest sums, for
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• Case 1: WNTS all edges connecting A to B are distinct from the
edges connecting A to C. From our list of edges above, we are com-
paring the following sets of numbers:

– R1 = 1 + 2m+ 2n+mn, 2m+ 2n+mn, . . . , 2 +m+ 2n+mn,
and

– S1 = 1 +m+ 2n+mn,−1 + 2n+mn, . . . , 3 + 2m, where
|R1| = m and |S1| = n.

WNTS R1 ∩ S1 = ∅.R1 consists of m consecutively descending num-
bers, with 2 +m+ 2n+mn as its lowest value. S1 consists of n de-
scending numbers, whose gaps between consecutive terms equalm+2,
with 1+m+2n+mn as its highest value. Since r ≥ 2+m+2n+mn
for all r ∈ R, and s ≤ 1+m+2n+mn for all s ∈ S, then r �= s for all
possible values of r and s. Thus R1 ∩ S1 = ∅, as needed. Therefore
all edges connecting A to B are distinct from the edges connecting A
to C.

• Case 2: WNTS all edges connecting B to A are distinct from the
edges connecting B to C. Note that there are m vertices in B, where
each vertex is adjacent to n+1 distinct edges. Because the difference
between each consecutive vertex in B is 1, then the difference between
each edge connecting every consecutive vertex in B to a vertex in C
will also differ by 1. WLOG, we will test to make sure all of x1’s
edges are distinct. (The proof can then be performed recursively m
times with each vertex, subtracting every edge value by 1 with each
respective vertex.) From our list of edges above, we are comparing
the following sets of numbers:

– R2 = 2 + 2m+ 2n+mn, and

– S2 = m+ 2n+mn,−2 + 2n+mn, . . . , 2 + 2m, where |R2| = 1
and |S2| = n

WNTS R2∩S2 = ∅. S2 consists of n descending numbers, whose gaps
between consecutive terms equal m+2, with m+2n+mn as its high-
est value. Since r > m+ 2n+mn for r ∈ R2 and s ≤ m+ 2n+mn
for all s ∈ S2, then r �= s for all possible values of r and s. Thus
R2 ∩ S2 = ∅, as needed. Therefore, all edges connecting B to A are
distinct from the edges connecting B to C.

• Case 3: WNTS all edges connecting C to A are distinct from the
edges connecting C to B. Note that there are n vertices in C, where

5
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Regarding graphs of the form K1,1,n, with n > 1, our program discovered that K1,1,1 
(this is just a standard 3-cycle), K1,1,2, K1,1,3, and K1,1,4 are edge-magic for every possible sum 
(examples of every possible sum for K1,1,2 are provided in Figure 1 on page 7.). Because of 
this information, we conjecture that all graphs of the form K1,1,n are edge-magic for the entire 
spectrum of possible magic sums, but we still have yet to provide a proof. Regarding graphs of 
the form K1,2,n, with n ≥ 2, K1,2,3 has been the only graph that our program has determined to 
be edge-magic for every possible sum. (Examples of each sum are provided in Figure 2 on page 
7.) Interestingly, K1,2,2 was not edge-magic for its second lowest and highest sums, and K1,2,4 
was not edge-magic for its second lowest and highest, fourth lowest and highest, and eighth 
lowest and highest sums. Because of this pattern, we conjectured that no complete tripartite 
graph of the form K1,2,n, with n even, is edge-magic for its second lowest and highest sums, but 
the proof turned out to be much more difficult that we originally anticipated. We also have 
the conjecture that the possible sums that will not work for the various graphs of this type 
will be the 2kth lowest and highest sums, for some integer value(s) k. We originally conjectured 
that graphs of the form  , with n odd, would work for every possible sum, but our program 
has already discovered that K1,2,5’s second lowest and highest sums do not work. Because our 
program is taking a while to check every possible solution for higher-order graphs, we are 
holding off on figuring out any other patterns for higher values of m and n (for K1,m,n) until we 
create a more efficient program.

We have also briefly begun testing graphs of the form K2,m,n, with m,n ≥ 2, and we have 
discovered that K2,2,2 actually is not edge-magic for any of its possible sums according to our 
program. Our conjecture that all complete tripartite graphs are edge-magic has thus been 
disproven with this counterexample (we have yet to provide a proof that K2,2,2 is not edge-
magic with a method besides brute force); however, we still want to find patterns in higher-
order complete tripartite graphs, so we have entered K2,2,3 and K2,2,4 into our program. Some 
labelings have already been discovered, but again, because of the inefficiency of our program, 
we still have yet to figure out if they work for the entire spectrum of possible sums.

Edge-Magic Spiders

With our research, we set out to find a pattern that followed for spiders, a type of tree with a 
central vertex of degree 3 or higher and spokes extending outward with length ≥ 1. In particular, 
we focused on spiders with s spoke tails and a longer tail with L edges. We conjecture that 
all graphs of this type are edge-magic and follow a certain pattern. The edges on the longer- 
length tail are labeled with e + v, e + v − 1, e + v − 2, . . . , e + v − L + 2, e + v − L + 1. 
Whichever number that the highest degree vertex is labeled with, the fol- lowing descending 
term is labeled the vertex of one of the smaller spoke tails. The numbers then fan out in 
descending order to all of the other vertices on the outer spoke tails. Once all of the spoke tails 
are labeled, we begin labeling the inner edge of the spoke tail with the smallest vertex with the 
next descending number. We then label all the vertices of the inner edges in descending order, 
fanning back to the spoke tail with the largest vertex. (An example is shown in Figure 3.)

Now, there is another pattern amongst these types of spiders with regards to the vertices 
on the longer tail. If the tail of length L is even, we label the outer-most vertex of this tail with 
the number 1. We skip the next vertex and label the third vertex with the number 2. We then 
skip the next vertex and label the fifth vertex 3, and we continue this pattern until we hit the 
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central vertex after n times (and thus this vertex will be labeled with the number n). Now, we 
go back to the vertices that were originally skipped on the longer tail and label them with n + 
1, n + 2, . . . (starting with the vertex between the vertices labeled 1 and 2, and moving upward 
towards the central vertex) until all of the vertices on the longer tail have been labeled. (An 
example is shown in Figure 4.) If the longer tail of length L edges is odd, we skip the outer most 
vertex and label the second-to-last vertex with the number 1. We skip the next vertex and label 
the next vertex with the number 2. We continue this pattern n times until we hit the central 
vertex, which we will label with the number n. From here, we go back to the outermost vertex 
and label it with the number n + 1. We then ascend up the tail and label the remaining vertices 
consecutively with n + 2, n + 3,... until all of the vertices on the longer tail have been labeled. 
(An example of this is shown in Figure 4.) Note that the number of spokes does not matter, 
as one would just continue the fanning pattern until all spokes are dealt with as explained in 
the previous paragraph. Also, as the speaker mentioned, all trees with < 15 vertices have been 
discovered to be edge-magic; this pattern still works for all spiders of this kind, though. We have 
attempted to form a proof to extend these patterns to all spiders of this type, but we have not 
been successful so far; we are leaving the proof-making to our advisor, Dr. Khodkar.

The majority of the research with regards to odd-cycle kites has been finding patterns for 
labelings of 3-cycle kites with either odd or even tails. Figure 5 shows the pattern for even-
length and odd-length tails. We have begun to conduct proofs to extend these kites to kites of 
higher cycles - such as 5-cycle and 7-cycle kites - but so far we have not had any success being 
able to generalize these patterns.

Our research is far from being over, and we will continue our research individually for an 
extended period of time; that being said, we still have many questions to address, and the 
following are some of the questions that we will be continuing to try to answer but can be 
researched by anyone who has an interest for it:

Which graphs apart from K1,1,n, with n ≥ 1, are edge-magic for every possible magic sum?

Are all graphs of the form K1,2,n, with n ≥ 2 and n ̸= 3, not edge-magic for their second 
lowest and highest possible magic sums?

Can any patterns be generalized to magic sums apart from the minimum possible sum for 
K1,m,n, with m, n ≥ 1?

Are any other graphs of the form K2,m,n, with m, n ≥ 2, not edge-magic for any possible 
sum, like K2,2,2?

Can any patterns be made about graphs of the form K2,m,n, with m, n ≥ 2 and m, n not both 2?

Which graphs are edge-magic for Kk,m,n, with k, m, n ≥ 3? K1,m,n, with m, n ≥ 1?

1)

2)

3)

3)

4)

5)
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Prove the given patterns in Figure 4 can be generalized to all spiders of the given form.

Which types of trees are edge-magic for every possible magic sum?

Prove or disprove the minimum sum for all trees is v + e + 4, where v is the number of 
vertices and e is the number of edges.

Prove or disprove that all possible spiders are always edge-magic.

Prove all 3-cycle kites are edge-magic.

Do any patterns exist amongst all 5-cycle kites? 7-cycle kites? Higher odd-cycle kites?

Do any patterns exist for odd-cycle kites in general?

Complete Tripartite-Graphs

Kites
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Figure 1: Examples of edge-magic total labelings ofK1,2,2 for every possible
sum from 12 to 18

10

Figure 2: Examples of edge-magic total labelings ofK1,2,3 for every possible
sum from 19 to 32

Figure 3: Blue numbers = vertex labels; green numbers = edge labels; M
= magic sum; E = number of edges; V = number of vertices
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Figure 1: Examples of edge-magic total labelings of K1,2,2 for every possible sum from 12 to 18

Figure 2: Examples of edge-magic total labelings of K1,2,3 for every possible sum from 19 to 32
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Figure 2: Examples of edge-magic total labelings ofK1,2,3 for every possible
sum from 19 to 32

Figure 3: Blue numbers = vertex labels; green numbers = edge labels; M
= magic sum; E = number of edges; V = number of vertices

11

Figure 4: (From left to right) Examples of spiders with its longest tail of
even and odd length.

12

Figure 3: Blue numbers = vertex labels; green numbers = edge labels; M = magic sum; E = number of edges; 
V = number of vertices

Figure 4: (From left to right) Examples of spiders with its longest tail of even and odd length.
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Figure 5: (From left to right) Examples of 3-cycle kites with even and
odd-length tails.

13

Figure 5: (From left to right) Examples of 3-cycle kites with even and odd-length tails.
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1. Introduction

2. Preliminaries

The purpose of this research is to study polynomials FA = FA(x, y, z, w) of BHK-type (see 
Definition 2.1). The zero-sets of these polynomials give rise to special examples of geometric 
objects known as K3 surfaces. The Picard number of a K3 surface, roughly speaking, measures 
the size of the collection of all curves lying on the surface that are defined by polynomial 
equations. Our interest is in the calculation of this Picard number for the K3 surface arising 
from FA. In [1], Kelly provides a concrete method for this calculation, which can be carried out 
by a computer, but the formula is still fairly complicated. This paper yields a simpler way to 
calculate the Picard number when FA satisfies an additional condition (labeled as (⋆) below).

Definition 2.1. Let FA be a polynomial of the form

Definition 2.2. A polynomial                                   is quasi-homogeneous of degree h 
and weights (q0, . . . ,qr) if and only if

Then we will say FA is a polynomial of BHK-type if the following hold:

The 4 × 4 matrix A = (aij) is invertible.

Each column of A has at least one zero.

Let e = (1,1,1,1)tr. Then the (unique) solution v to Av = e is, up to permutation of 
the coordinates, one of the 95 vectors in the left column of Table 2.2 of [2].

(i)

(ii)

(iii)
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satisfies an additional condition (labeled as (�) below).

2. Preliminaries

Definition 2.1. Let FA be a polynomial of the form

FA =

3∑
i=0

3∏
j=0

x
aij
j .

Then we will say FA is a polynomial of BHK-type if the following hold:

(i) The 4× 4 matrix A = (aij) is invertible.

(ii) Each column of A has at least one zero.

(iii) Let e = (1, 1, 1, 1)tr. Then the (unique) solution v to Av = e is, up to permutation of the
coordinates, one of the 95 vectors in the left column of Table 2.2 of [2].

Definition 2.2. A polynomial f(x0, . . . , xr) ∈ C[x0, . . . , xr] is quasi-homogeneous of degree h and
weights (q0, . . . , qr) if and only if

f(λq0x0, . . . , λ
qrxr) = λhf(x0, . . . , xr)

for all λ ∈ C∗.

As a result of part (iii) of Definition 2.1, a polynomial FA of BHK-type is quasi-homogeneous,
and its degree and weight system can be determined as follows. The solution to Av = e is a
vector v with rational coordinates, and can be written with least common denominator as v =
( q0h ,

q1
h ,

q2
h ,

q3
h )

tr. Then FA is quasi-homogeneous of degree h and weights (q0, q1, q2, q3) of FA. Note
that by assumption the weights (q0, q1, q2, q3) are relatively prime. The requirement that the vector
v belongs to Yonemura’s Table 2.2 in [2] guarantees that the weight system belongs to one of the
“95 families” that give rise to all K3 surfaces which can be realized as hypersurfaces in weighted
projective spaces. It moreover implies that q0 + q1 + q2 + q3 = h.
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Then we will say FA is a polynomial of BHK-type if the following hold:

(i) The 4× 4 matrix A = (aij) is invertible.

(ii) Each column of A has at least one zero.

(iii) Let e = (1, 1, 1, 1)tr. Then the (unique) solution v to Av = e is, up to permutation of the
coordinates, one of the 95 vectors in the left column of Table 2.2 of [2].

Definition 2.2. A polynomial f(x0, . . . , xr) ∈ C[x0, . . . , xr] is quasi-homogeneous of degree h and
weights (q0, . . . , qr) if and only if

f(λq0x0, . . . , λ
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for all λ ∈ C∗.

As a result of part (iii) of Definition 2.1, a polynomial FA of BHK-type is quasi-homogeneous,
and its degree and weight system can be determined as follows. The solution to Av = e is a
vector v with rational coordinates, and can be written with least common denominator as v =
( q0h ,
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h ,

q2
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q3
h )

tr. Then FA is quasi-homogeneous of degree h and weights (q0, q1, q2, q3) of FA. Note
that by assumption the weights (q0, q1, q2, q3) are relatively prime. The requirement that the vector
v belongs to Yonemura’s Table 2.2 in [2] guarantees that the weight system belongs to one of the
“95 families” that give rise to all K3 surfaces which can be realized as hypersurfaces in weighted
projective spaces. It moreover implies that q0 + q1 + q2 + q3 = h.
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Polynomials and their mirrors. Let FA = FA(x0, x1, x2, x3) be a polynomial of BHK-type of
degree h with weights (q0, q1, q2, q3). As in part (i) of Definition 2.1, let A be the 4×4 associated ex-
ponent matrix of FA, which is formed by placing the exponent of xj from the i-th term in the position
(i, j). (Note that we are indexing nontraditionally with 0 ≤ i, j ≤ 3.) Now using AT , the transpose
of A, we can reverse this process and form the mirror polynomial FAT = FAT (x0, x1, x2, x3). This
polynomial will also be of BHK-type, with some degree hT and weights (qT0 , q

T
1 , q

T
2 , q

T
3 ). Note that

the mirror polynomial of FAT is the original polynomial FA.

In general it is true that h · hT | det(A), but det(A) (which we can assume to be positive without
loss of generality) can be greater than h · hT . In this paper we will be studying polynomials that
satisfy the additional condition

(�) det(A) = h · hT .

Note that this restriction still includes many polynomials, such as the following example.

Example. Let FA = x20 + x31 + x72x3 + x363 . This polynomial is of BHK-type with degree h = 36
and weights (q0, q1, q2, q3) = (18, 12, 5, 1).

Using the exponents of each monomial of FA, we form the 4× 4 matrix

A =



2 0 0 0
0 3 0 0
0 0 7 1
0 0 0 36


 .

Taking the transpose of matrix A, we have

AT =



2 0 0 0
0 3 0 0
0 0 7 0
0 0 1 36


 .

Now using matrix AT , we can reverse the process above to form the polynomial

FAT = x20 + x31 + x72 + x2x
36
3 .

This is the mirror polynomial of FA. Notice FAT is also of BHK-type, but with degree hT = 42
and weights (q0T , q1T , q2T , q3T ) = (21, 14, 6, 1).

Finally, we let d be the least common denominator of all nonzero entries of A−1, which will play
an important role in the calculation of the Picard number below.

Lemma 2.3. Let h be the degree of a polynomial FA of BHK-type and d be as above. Then h | d.

Proof. From part (iii) of Definition 2.1 we know that Av = e where v = ( q0h ,
q1
h ,

q2
h ,

q3
h )

tr and

e = (1, 1, 1, 1)tr. Since A is invertible, then we can write v = A−1e. Now multiplying both sides
by d, we have dv = dA−1e. By definition of d the right hand side is a vector with integer entries.
Since the weights do not have any common factors, then for dv to have integer entries, h | d must
be true. �

Calculating the Picard number. Consider 4-tuples of the form (a0, a1, a2, a3) ∈ (Z/d)4. De-
fine

Ad = {(a0, a1, a2, a3) ∈ (Z/d)4 | a0 + a1 + a2 + a3 ≡ 0 (mod d) and ai �≡ 0 (mod d) for all i}.
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It is important to note that Bd(b) only depends upon b modulo d, and therefore we will often
assume 0 < b < d. Finally, define Id(b) = Ad −Bd(b).

Now define the following cyclic subgroups of (Z/d)4:
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Note that for i ∈ {0, 1, 2, 3}, qid
h

∈ Z by Lemma 2.3.

Now let X be the complex K3 surface defined by FA. Since FA has integer coefficients, it can be
reduced modulo p, for any prime p � d, to give a K3 surface Xp defined over Fp. Then in Corollary
1.4 of [1], Kelly has shown the following:

Theorem 2.4 (Kelly). The geometric Picard numbers ρ(X) and ρ(Xp) are given by

ρ(X) = 22−#(Id(0) ∩GT )

ρ(Xp) = 22−#(Id(p) ∩GT ).

3. Findings

So as to simplify notation, let Ad := Ad ∩G,Bd(b) := Bd(b) ∩G, and Id(b) := Id(b) ∩G.

Calculation of Id(0). In this section, we focus on producing a simplified formula for computing
the Picard number ρ(X) when the condition det(A) = h · hT is satisfied.

Proposition 3.1. Ord(G) = h.

Proof. Since G = 〈α〉 where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1), then hα = (0, 0, 0, 0). This
means Ord(G) | h. Now let j := Ord(G). Then jα = (0, 0, 0, 0) with j | h. Let h = jk and by

Lemma 2.3, write d = hh′ for some k, h′ ∈ Z. Then jα = (0, 0, 0, 0) implies j qidh = jh′qi ≡ 0
(mod d) for all i. This means that d | jh′qi for all i. Substituting for d, we have jkh′ | jh′qi for all
i. Thus, k | qi for all i. Since the greatest common divisor of q0, q1, q2, q3 is 1, then k = 1. Hence
h = j and the order of G is h. �

Lemma 3.2. If (k, h) = 1, then there exists a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1.
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Now let X be the complex K3 surface defined by FA. Since FA has integer coefficients, it can be
reduced modulo p, for any prime p � d, to give a K3 surface Xp defined over Fp. Then in Corollary
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It is important to note that Bd(b) only depends upon b modulo d, and therefore we will often
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Now let X be the complex K3 surface defined by FA. Since FA has integer coefficients, it can be
reduced modulo p, for any prime p � d, to give a K3 surface Xp defined over Fp. Then in Corollary
1.4 of [1], Kelly has shown the following:

Theorem 2.4 (Kelly). The geometric Picard numbers ρ(X) and ρ(Xp) are given by

ρ(X) = 22−#(Id(0) ∩GT )

ρ(Xp) = 22−#(Id(p) ∩GT ).

3. Findings

So as to simplify notation, let Ad := Ad ∩G,Bd(b) := Bd(b) ∩G, and Id(b) := Id(b) ∩G.

Calculation of Id(0). In this section, we focus on producing a simplified formula for computing
the Picard number ρ(X) when the condition det(A) = h · hT is satisfied.
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0

〈
tkqi
h

〉

By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
tK ≡ 1 (mod h). Then (t, d) = 1 and

3∑
i=0

〈
tkqi
h

〉
=

3∑
i=0

〈
tKqi
h

〉
=

3∑
i=0

〈
qi
h

〉
.

Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0

〈
tkqi
h

〉
.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
i=0

〈
t′qi
h

〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
i=0

〈
tkqi
h

〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
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) as in

equation (2). Hence #(Id(0) ∩GT ) = φ(hT ). �
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Define

Bd(0) =

{
(a0, a1, a2, a3) ∈ Ad

∣∣∣∣
3∑

i=0

〈
tai
d

〉
= 2 for all t ∈ Z such that (t, d) = 1

}
.

Here 〈mn 〉 is the fractional part of the rational number m
n ∈ Q, and hence lies in [0, 1). For any

b ∈ Z such that (b, d) = 1, let f be the order of b in (Z/d)∗ and define

Bd(b) =

{
(a0, a1, a2, a3) ∈ Ad

∣∣∣∣
3∑

i=0

f−1∑
j=0

〈
taib

j

d

〉
= 2f for all t ∈ Z such that (t, d) = 1

}
.

It is important to note that Bd(b) only depends upon b modulo d, and therefore we will often
assume 0 < b < d. Finally, define Id(b) = Ad −Bd(b).

Now define the following cyclic subgroups of (Z/d)4:

(1) G = 〈α〉, where α =

(
q0d

h
,
q1d

h
,
q2d

h
,
q3d

h

)
,

(2) GT = 〈αT 〉, where αT =

(
q0T d

hT
,
q1T d

hT
,
q2T d

hT
,
q3T d

hT

)
.

Note that for i ∈ {0, 1, 2, 3}, qid
h

∈ Z by Lemma 2.3.

Now let X be the complex K3 surface defined by FA. Since FA has integer coefficients, it can be
reduced modulo p, for any prime p � d, to give a K3 surface Xp defined over Fp. Then in Corollary
1.4 of [1], Kelly has shown the following:

Theorem 2.4 (Kelly). The geometric Picard numbers ρ(X) and ρ(Xp) are given by

ρ(X) = 22−#(Id(0) ∩GT )

ρ(Xp) = 22−#(Id(p) ∩GT ).

3. Findings

So as to simplify notation, let Ad := Ad ∩G,Bd(b) := Bd(b) ∩G, and Id(b) := Id(b) ∩G.

Calculation of Id(0). In this section, we focus on producing a simplified formula for computing
the Picard number ρ(X) when the condition det(A) = h · hT is satisfied.

Proposition 3.1. Ord(G) = h.

Proof. Since G = 〈α〉 where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1), then hα = (0, 0, 0, 0). This
means Ord(G) | h. Now let j := Ord(G). Then jα = (0, 0, 0, 0) with j | h. Let h = jk and by

Lemma 2.3, write d = hh′ for some k, h′ ∈ Z. Then jα = (0, 0, 0, 0) implies j qidh = jh′qi ≡ 0
(mod d) for all i. This means that d | jh′qi for all i. Substituting for d, we have jkh′ | jh′qi for all
i. Thus, k | qi for all i. Since the greatest common divisor of q0, q1, q2, q3 is 1, then k = 1. Hence
h = j and the order of G is h. �

Lemma 3.2. If (k, h) = 1, then there exists a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1.
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means Ord(G) | h. Now let j := Ord(G). Then jα = (0, 0, 0, 0) with j | h. Let h = jk and by
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h = j and the order of G is h. �

Lemma 3.2. If (k, h) = 1, then there exists a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1.
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0

〈
tkqi
h

〉

By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
tK ≡ 1 (mod h). Then (t, d) = 1 and

3∑
i=0

〈
tkqi
h

〉
=

3∑
i=0

〈
tKqi
h

〉
=

3∑
i=0

〈
qi
h

〉
.

Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0

〈
tkqi
h

〉
.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
i=0

〈
t′qi
h

〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
i=0

〈
tkqi
h

〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
q
0T

d

hT
,
q
1T

d

hT
,
q
2T

d

hT
,
q
3T

d

hT
) as in

equation (2). Hence #(Id(0) ∩GT ) = φ(hT ). �
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Polynomials and their mirrors. Let FA = FA(x0, x1, x2, x3) be a polynomial of BHK-type of
degree h with weights (q0, q1, q2, q3). As in part (i) of Definition 2.1, let A be the 4×4 associated ex-
ponent matrix of FA, which is formed by placing the exponent of xj from the i-th term in the position
(i, j). (Note that we are indexing nontraditionally with 0 ≤ i, j ≤ 3.) Now using AT , the transpose
of A, we can reverse this process and form the mirror polynomial FAT = FAT (x0, x1, x2, x3). This
polynomial will also be of BHK-type, with some degree hT and weights (qT0 , q

T
1 , q

T
2 , q

T
3 ). Note that

the mirror polynomial of FAT is the original polynomial FA.

In general it is true that h · hT | det(A), but det(A) (which we can assume to be positive without
loss of generality) can be greater than h · hT . In this paper we will be studying polynomials that
satisfy the additional condition

(�) det(A) = h · hT .

Note that this restriction still includes many polynomials, such as the following example.

Example. Let FA = x20 + x31 + x72x3 + x363 . This polynomial is of BHK-type with degree h = 36
and weights (q0, q1, q2, q3) = (18, 12, 5, 1).

Using the exponents of each monomial of FA, we form the 4× 4 matrix

A =



2 0 0 0
0 3 0 0
0 0 7 1
0 0 0 36


 .

Taking the transpose of matrix A, we have

AT =



2 0 0 0
0 3 0 0
0 0 7 0
0 0 1 36


 .

Now using matrix AT , we can reverse the process above to form the polynomial

FAT = x20 + x31 + x72 + x2x
36
3 .

This is the mirror polynomial of FA. Notice FAT is also of BHK-type, but with degree hT = 42
and weights (q0T , q1T , q2T , q3T ) = (21, 14, 6, 1).

Finally, we let d be the least common denominator of all nonzero entries of A−1, which will play
an important role in the calculation of the Picard number below.

Lemma 2.3. Let h be the degree of a polynomial FA of BHK-type and d be as above. Then h | d.

Proof. From part (iii) of Definition 2.1 we know that Av = e where v = ( q0h ,
q1
h ,

q2
h ,

q3
h )

tr and

e = (1, 1, 1, 1)tr. Since A is invertible, then we can write v = A−1e. Now multiplying both sides
by d, we have dv = dA−1e. By definition of d the right hand side is a vector with integer entries.
Since the weights do not have any common factors, then for dv to have integer entries, h | d must
be true. �

Calculating the Picard number. Consider 4-tuples of the form (a0, a1, a2, a3) ∈ (Z/d)4. De-
fine

Ad = {(a0, a1, a2, a3) ∈ (Z/d)4 | a0 + a1 + a2 + a3 ≡ 0 (mod d) and ai �≡ 0 (mod d) for all i}.
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Proposition 3.5. For all (b, d) = 1, we have 

Since (k,h) = r and (t,h) = 1 implies (tk,h) = r, then for all t relatively prime to h, we have in 
particular that                          A key consequence of part (iii) of Definition 2.1 (which we will 
not prove here) is that,

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute                    . By Theorem 
3.3 we can conclude that                                                  
as in equation (2). Hence 

Calculation of Id(b) for (b,d) = 1. The focus of this section is to prove results about Id(b) in 
order to produce a simplified formula (when det(A) = h · hT ) for          the Picard number of 
the K3 surface defined over

where    is Euler’s phi function.

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. 
Then the Picard number        is given by
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0

〈
tkqi
h

〉

By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
tK ≡ 1 (mod h). Then (t, d) = 1 and

3∑
i=0

〈
tkqi
h

〉
=

3∑
i=0

〈
tKqi
h

〉
=

3∑
i=0

〈
qi
h

〉
.

Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have

3∑
i=0

〈
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d

〉
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〈
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〉
.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
i=0

〈
t′qi
h

〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
i=0

〈
tkqi
h

〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
q
0T

d

hT
,
q
1T

d

hT
,
q
2T

d

hT
,
q
3T

d

hT
) as in

equation (2). Hence #(Id(0) ∩GT ) = φ(hT ). �
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system
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K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �
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Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).
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Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,
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for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
i=0
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〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).
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Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have
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Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,
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= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have
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= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
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.

Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have
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=
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.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
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〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
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〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).
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Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have
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Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
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where φ is Euler’s phi function.
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have
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〈
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〉

By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
tK ≡ 1 (mod h). Then (t, d) = 1 and
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=
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=
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Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).
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particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
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K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
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By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
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This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have
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By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
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=
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Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have
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=
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.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
i=0

〈
t′qi
h

〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
i=0

〈
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〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0

〈
tkqi
h

〉

By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
tK ≡ 1 (mod h). Then (t, d) = 1 and
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i=0

〈
tkqi
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〉
=

3∑
i=0

〈
tKqi
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〉
=

3∑
i=0
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.

Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have

3∑
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〈
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d

〉
=

3∑
i=0

〈
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h

〉
.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
i=0

〈
t′qi
h

〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
i=0

〈
tkqi
h

〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0

〈
tkqi
h

〉

By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
tK ≡ 1 (mod h). Then (t, d) = 1 and
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〉
=

3∑
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=
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.

Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have

3∑
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d

〉
=

3∑
i=0
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h

〉
.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
i=0

〈
t′qi
h

〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
i=0

〈
tkqi
h

〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have

3∑
i=0

〈
tai
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〉
=

3∑
i=0

〈
tkqi
h

〉

By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
tK ≡ 1 (mod h). Then (t, d) = 1 and
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=
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〈
tKqi
h

〉
=
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.

Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0
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h

〉
.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
i=0

〈
t′qi
h

〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
i=0

〈
tkqi
h

〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have

3∑
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=

3∑
i=0

〈
tkqi
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〉

By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
tK ≡ 1 (mod h). Then (t, d) = 1 and
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tkqi
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=
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=
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.

Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0

〈
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h

〉
.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
i=0

〈
t′qi
h

〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
i=0

〈
tkqi
h

〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have

3∑
i=0

〈
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=

3∑
i=0

〈
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〉

By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
tK ≡ 1 (mod h). Then (t, d) = 1 and
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〉
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〉
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〉
.

Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have
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〉
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〉
.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
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〈
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h

〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
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〈
tkqi
h

〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
q
0T

d

hT
,
q
1T

d

hT
,
q
2T

d

hT
,
q
3T

d

hT
) as in

equation (2). Hence #(Id(0) ∩GT ) = φ(hT ). �
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Calculation of Id(b) for (b, d) = 1. The focus of this section is to prove results about Id(b) in
order to produce a simplified formula (when det(A) = h · hT ) for ρ(Xp), the Picard number of the
K3 surface defined over Fp.

Proposition 3.5. For all (b, d) = 1, we have Id(b) ⊆ Id(0).

Proof. Let (a0, a1, a2, a3) be an element of Ad but not of Id(0). This implies that (a0, a1, a2, a3) ∈
Bd(0). Thus,

(3)

3∑
i=0

〈
tai
d

〉
= 2 for all t ∈ Z such that (t, d) = 1

We now examine the double sum
3∑

i=0

f−1∑
j=0

〈
t′aib

j

d

〉

for a fixed t′ such that (t′, d) = 1. We can rearrange the sum as

f−1∑
j=0

3∑
i=0

〈
t′aib

j

d

〉
.

Since (b, d) = 1, then (t′bj , d) = 1. Thus by (1) above with t = t′bj ,

3∑
i=0

〈
(t′bj)ai

d

〉
= 2

for all b. So, the double sum equals

f−1∑
j=0

3∑
i=0

〈
t′aib

j

d

〉
=

f−1∑
j=0

2 = 2f.

Thus (a0, a1, a2, a3) ∈ Bd(b), showing (a0, a1, a2, a3) �∈ Id(b) for any b. �

Proposition 3.6. We have either Id(b) = Id(0) or Id(b) = {}.

Proof. By Theorem 3.3 we know Id(0) = {kα | (k, h) = 1}. First suppose α = (a0, a1, a2, a3) �∈ Id(b)
for some b. This implies

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
= 2f for all (t, d) = 1.

Substituting for ai we have

3∑
i=0

f−1∑
j=0

〈
tqib

j

h

〉
= 2f for all (t, h) = 1.

Let k ∈ Z such that (k, h) = 1. Then we know kα ∈ Id(0). Let t
′ be coprime to d. Since (t′, d) = 1,

then (t′, h) = 1. Also (t′, h) = 1 and (k, h) = 1 implies (t′k, h) = 1. Thus the double sum above
with t = t′k is

3∑
i=0

f−1∑
j=0

〈
t′kaib

j

d

〉
=

3∑
i=0

f−1∑
j=0

〈
(t′k)qib

j

h

〉
= 2f,

which implies kα ∈ Bd(b). Therefore kα �∈ Id(b). This proves that if α �∈ Id(b), then Id(b) = {}.
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Proof. Let q1, q2, . . . , qn be the distinct primes that divide d but not h. Then by the Chinese
Remainder Theorem, the system

K ≡ k (mod h)

K ≡ 1 (mod q1q2 · · · qn)
has a solution modulo hq1q2 · · · qn. In fact, we may take K to lie between 1 and hq1q2 · · · qn. Thus
we have found a K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. �

Theorem 3.3. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and
let A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then we have

Id(0) = {kα | (k, h) = 1}, where α = ( q0dh , q1dh , q2dh , q3dh ) as in equation (1).

Proof. Let (a0, a1, a2, a3) ∈ Ad. First suppose (a0, a1, a2, a3) = kα for some (k, h) = 1. Then we
have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0

〈
tkqi
h

〉

By Lemma 3.2, there exists K ∈ Z such that K ≡ k (mod h) and (K, d) = 1. Choose t such that
tK ≡ 1 (mod h). Then (t, d) = 1 and

3∑
i=0

〈
tkqi
h

〉
=

3∑
i=0

〈
tKqi
h

〉
=

3∑
i=0

〈
qi
h

〉
.

Since q0 + q1 + q2 + q3 = h, then this sum equals 1. Thus (a0, a1, a2, a3) ∈ Id(0).

Now suppose (a0, a1, a2, a3) = kα for some k ∈ Z such that (k, h) = r > 1. Then we have

3∑
i=0

〈
tai
d

〉
=

3∑
i=0

〈
tkqi
h

〉
.

Since (k, h) = r and (t, h) = 1 implies (tk, h) = r, then for all t relatively prime to h, we have in
particular that tk �≡ ±1 (mod h). A key consequence of part (iii) of Definition 2.1 (which we will
not prove here) is that,

3∑
i=0

〈
t′qi
h

〉
= 2

for all t′ such that (t′, h) = 1 and t′ �≡ ±1 (mod h). (Note that the sum is not equal to 2 when
t ≡ ±1 (mod h).) So with t′ = tk we have

3∑
i=0

〈
tkqi
h

〉
= 2.

This implies (a0, a1, a2, a3) �∈ Id(0). �

Corollary 3.4. Let FA be as in Theorem 3.3 and let X be the K3 surface arising from FA. Then
the Picard number ρ(X) is given by

ρ(X) = 22− φ(hT ),

where φ is Euler’s phi function.

Proof. Using Kelly’s formula in Theorem 2.4, we need to compute #(Id(0)∩GT ). By Theorem 3.3

we can conclude that Id(0) ∩ GT = {kαT | (k, hT ) = 1} where αT = (
q
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) as in

equation (2). Hence #(Id(0) ∩GT ) = φ(hT ). �
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Polynomials and their mirrors. Let FA = FA(x0, x1, x2, x3) be a polynomial of BHK-type of
degree h with weights (q0, q1, q2, q3). As in part (i) of Definition 2.1, let A be the 4×4 associated ex-
ponent matrix of FA, which is formed by placing the exponent of xj from the i-th term in the position
(i, j). (Note that we are indexing nontraditionally with 0 ≤ i, j ≤ 3.) Now using AT , the transpose
of A, we can reverse this process and form the mirror polynomial FAT = FAT (x0, x1, x2, x3). This
polynomial will also be of BHK-type, with some degree hT and weights (qT0 , q

T
1 , q

T
2 , q

T
3 ). Note that

the mirror polynomial of FAT is the original polynomial FA.

In general it is true that h · hT | det(A), but det(A) (which we can assume to be positive without
loss of generality) can be greater than h · hT . In this paper we will be studying polynomials that
satisfy the additional condition

(�) det(A) = h · hT .

Note that this restriction still includes many polynomials, such as the following example.

Example. Let FA = x20 + x31 + x72x3 + x363 . This polynomial is of BHK-type with degree h = 36
and weights (q0, q1, q2, q3) = (18, 12, 5, 1).

Using the exponents of each monomial of FA, we form the 4× 4 matrix

A =



2 0 0 0
0 3 0 0
0 0 7 1
0 0 0 36


 .

Taking the transpose of matrix A, we have

AT =



2 0 0 0
0 3 0 0
0 0 7 0
0 0 1 36


 .

Now using matrix AT , we can reverse the process above to form the polynomial

FAT = x20 + x31 + x72 + x2x
36
3 .

This is the mirror polynomial of FA. Notice FAT is also of BHK-type, but with degree hT = 42
and weights (q0T , q1T , q2T , q3T ) = (21, 14, 6, 1).

Finally, we let d be the least common denominator of all nonzero entries of A−1, which will play
an important role in the calculation of the Picard number below.

Lemma 2.3. Let h be the degree of a polynomial FA of BHK-type and d be as above. Then h | d.

Proof. From part (iii) of Definition 2.1 we know that Av = e where v = ( q0h ,
q1
h ,

q2
h ,

q3
h )

tr and

e = (1, 1, 1, 1)tr. Since A is invertible, then we can write v = A−1e. Now multiplying both sides
by d, we have dv = dA−1e. By definition of d the right hand side is a vector with integer entries.
Since the weights do not have any common factors, then for dv to have integer entries, h | d must
be true. �

Calculating the Picard number. Consider 4-tuples of the form (a0, a1, a2, a3) ∈ (Z/d)4. De-
fine

Ad = {(a0, a1, a2, a3) ∈ (Z/d)4 | a0 + a1 + a2 + a3 ≡ 0 (mod d) and ai �≡ 0 (mod d) for all i}.
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Proposition 3.6. We have either

2 BORA OLCKEN ADVISOR: CHRISTOPHER LYONS

Polynomials and their mirrors. Let FA = FA(x0, x1, x2, x3) be a polynomial of BHK-type of
degree h with weights (q0, q1, q2, q3). As in part (i) of Definition 2.1, let A be the 4×4 associated ex-
ponent matrix of FA, which is formed by placing the exponent of xj from the i-th term in the position
(i, j). (Note that we are indexing nontraditionally with 0 ≤ i, j ≤ 3.) Now using AT , the transpose
of A, we can reverse this process and form the mirror polynomial FAT = FAT (x0, x1, x2, x3). This
polynomial will also be of BHK-type, with some degree hT and weights (qT0 , q

T
1 , q

T
2 , q

T
3 ). Note that

the mirror polynomial of FAT is the original polynomial FA.

In general it is true that h · hT | det(A), but det(A) (which we can assume to be positive without
loss of generality) can be greater than h · hT . In this paper we will be studying polynomials that
satisfy the additional condition

(�) det(A) = h · hT .

Note that this restriction still includes many polynomials, such as the following example.

Example. Let FA = x20 + x31 + x72x3 + x363 . This polynomial is of BHK-type with degree h = 36
and weights (q0, q1, q2, q3) = (18, 12, 5, 1).

Using the exponents of each monomial of FA, we form the 4× 4 matrix

A =



2 0 0 0
0 3 0 0
0 0 7 1
0 0 0 36


 .

Taking the transpose of matrix A, we have

AT =



2 0 0 0
0 3 0 0
0 0 7 0
0 0 1 36


 .

Now using matrix AT , we can reverse the process above to form the polynomial

FAT = x20 + x31 + x72 + x2x
36
3 .

This is the mirror polynomial of FA. Notice FAT is also of BHK-type, but with degree hT = 42
and weights (q0T , q1T , q2T , q3T ) = (21, 14, 6, 1).

Finally, we let d be the least common denominator of all nonzero entries of A−1, which will play
an important role in the calculation of the Picard number below.

Lemma 2.3. Let h be the degree of a polynomial FA of BHK-type and d be as above. Then h | d.

Proof. From part (iii) of Definition 2.1 we know that Av = e where v = ( q0h ,
q1
h ,

q2
h ,

q3
h )

tr and

e = (1, 1, 1, 1)tr. Since A is invertible, then we can write v = A−1e. Now multiplying both sides
by d, we have dv = dA−1e. By definition of d the right hand side is a vector with integer entries.
Since the weights do not have any common factors, then for dv to have integer entries, h | d must
be true. �

Calculating the Picard number. Consider 4-tuples of the form (a0, a1, a2, a3) ∈ (Z/d)4. De-
fine

Ad = {(a0, a1, a2, a3) ∈ (Z/d)4 | a0 + a1 + a2 + a3 ≡ 0 (mod d) and ai �≡ 0 (mod d) for all i}.
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Now suppose                                   . Then there exists (t, d) = 1 such that

By equation (2) above, this sum does not equal 2f. Therefore                as required. This proves 
that if

Proof. Using the fact that (q0, q1, q2, q3) belongs to the 95 weight systems, one may show that
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Calculation of Id(b) for (b, d) = 1. The focus of this section is to prove results about Id(b) in
order to produce a simplified formula (when det(A) = h · hT ) for ρ(Xp), the Picard number of the
K3 surface defined over Fp.
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Now suppose α = (a0, a1, a2, a3) ∈ Id(b). Then there exists (t, d) = 1 such that

(4)

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
�= 2f.

Let k ∈ Z such that (k, h) = 1. This implies kα ∈ Id(0). By Lemma 3.2, there exists K ∈ Z such
that K ≡ k (mod h) and (K, d) = 1. Let K ′ ∈ Z be a solution to K ′K ≡ 1 (mod d). Now we
examine the double sum

3∑
i=0

f−1∑
j=0

〈
t′kaib

j

d

〉

where t′ = K ′t. Then this sum will be

3∑
i=0

f−1∑
j=0

〈
tK ′kaib

j

d

〉
=

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
.

By equation (2) above, this sum does not equal 2f . Therefore kα ∈ Id(b), as required. This proves
that if α ∈ Id(b), then Id(b) = Id(0). �

Lemma 3.7. Let G = 〈α〉 with α = (a0, a1, a2, a3). Then we have

(5)

3∑
i=0

f−1∑
j=0

〈
taip

j

d

〉
= 2f − 1, 2f, or 2f + 1.

Proof. Using the fact that (q0, q1, q2, q3) belongs to the 95 weight systems, one may show that

3∑
i=0

〈
t′ai
d

〉
= 1, 2, or 3 for all (t′, d) = 1.

In fact, it is known that this sum equals 1 only when t′ ≡ 1 (mod h) and equals 3 only when
t′ ≡ −1 (mod h). Since p has order f in (Z/d)∗, then the powers pj are distinct modulo d for all
0 < j < f −1. This implies that for a fixed t, the products tpj will be distinct for all 0 < j < f −1.
Thus the double sum on the right hand side of equation (5) contains f sums, which include some
that equal 2, at most one that equals 1, and at most one that equals 3. If one of these sums equals
1 but none equal 3, then the double sum will equal 2f − 1. If the one of these sums equals 3 but
none equal 1, then the double sum will equal 2f + 1. If the one of the sums equals 1 and another
equals 3, then the double sum will equal 2f . And finally if the sums all equal 2, then the double
sum will equal 2f . �

Theorem 3.8. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and let
A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then Id(b) = {} if
and only if bk ≡ −1 (mod h) for some k ∈ Z.

Proof. Note that bk ≡ −1 (mod h) for some k ∈ Z if and only if the equivalence class of −1 modulo
h, written [−1], is an element of the subgroup of (Z/d)∗ generated by powers of b modulo h, written
〈[b]〉. Hence it is sufficient to prove Id(b) = {} if and only if [−1] ∈ 〈[b]〉. First suppose [−1] �∈ 〈[b]〉.
Then the double sum for α = ( q0dh , q1dh , q2dh , q3dh ) as the generator of G and some (t, d) = 1 is

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
=

f−1∑
j=0

3∑
i=0

〈
tqib

j

h

〉
.
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In fact, it is known that this sum equals 1 only when t′ ≡ 1 (mod h) and equals 3 only when
t′ ≡ −1 (mod h). Since p has order f in (Z/d)∗, then the powers pj are distinct modulo d for all
0 < j < f −1. This implies that for a fixed t, the products tpj will be distinct for all 0 < j < f −1.
Thus the double sum on the right hand side of equation (5) contains f sums, which include some
that equal 2, at most one that equals 1, and at most one that equals 3. If one of these sums equals
1 but none equal 3, then the double sum will equal 2f − 1. If the one of these sums equals 3 but
none equal 1, then the double sum will equal 2f + 1. If the one of the sums equals 1 and another
equals 3, then the double sum will equal 2f . And finally if the sums all equal 2, then the double
sum will equal 2f . �

Theorem 3.8. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and let
A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then Id(b) = {} if
and only if bk ≡ −1 (mod h) for some k ∈ Z.

Proof. Note that bk ≡ −1 (mod h) for some k ∈ Z if and only if the equivalence class of −1 modulo
h, written [−1], is an element of the subgroup of (Z/d)∗ generated by powers of b modulo h, written
〈[b]〉. Hence it is sufficient to prove Id(b) = {} if and only if [−1] ∈ 〈[b]〉. First suppose [−1] �∈ 〈[b]〉.
Then the double sum for α = ( q0dh , q1dh , q2dh , q3dh ) as the generator of G and some (t, d) = 1 is
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〉
=
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j=0

3∑
i=0

〈
tqib

j

h

〉
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Calculation of Id(b) for (b, d) = 1. The focus of this section is to prove results about Id(b) in
order to produce a simplified formula (when det(A) = h · hT ) for ρ(Xp), the Picard number of the
K3 surface defined over Fp.

Proposition 3.5. For all (b, d) = 1, we have Id(b) ⊆ Id(0).

Proof. Let (a0, a1, a2, a3) be an element of Ad but not of Id(0). This implies that (a0, a1, a2, a3) ∈
Bd(0). Thus,

(3)

3∑
i=0

〈
tai
d

〉
= 2 for all t ∈ Z such that (t, d) = 1

We now examine the double sum
3∑

i=0

f−1∑
j=0

〈
t′aib

j

d

〉

for a fixed t′ such that (t′, d) = 1. We can rearrange the sum as

f−1∑
j=0

3∑
i=0

〈
t′aib

j

d

〉
.

Since (b, d) = 1, then (t′bj , d) = 1. Thus by (1) above with t = t′bj ,

3∑
i=0

〈
(t′bj)ai

d

〉
= 2

for all b. So, the double sum equals

f−1∑
j=0

3∑
i=0

〈
t′aib

j

d

〉
=

f−1∑
j=0

2 = 2f.

Thus (a0, a1, a2, a3) ∈ Bd(b), showing (a0, a1, a2, a3) �∈ Id(b) for any b. �

Proposition 3.6. We have either Id(b) = Id(0) or Id(b) = {}.

Proof. By Theorem 3.3 we know Id(0) = {kα | (k, h) = 1}. First suppose α = (a0, a1, a2, a3) �∈ Id(b)
for some b. This implies

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
= 2f for all (t, d) = 1.

Substituting for ai we have

3∑
i=0

f−1∑
j=0

〈
tqib

j

h

〉
= 2f for all (t, h) = 1.

Let k ∈ Z such that (k, h) = 1. Then we know kα ∈ Id(0). Let t
′ be coprime to d. Since (t′, d) = 1,

then (t′, h) = 1. Also (t′, h) = 1 and (k, h) = 1 implies (t′k, h) = 1. Thus the double sum above
with t = t′k is

3∑
i=0

f−1∑
j=0

〈
t′kaib

j

d

〉
=

3∑
i=0

f−1∑
j=0

〈
(t′k)qib

j

h

〉
= 2f,

which implies kα ∈ Bd(b). Therefore kα �∈ Id(b). This proves that if α �∈ Id(b), then Id(b) = {}.
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Polynomials and their mirrors. Let FA = FA(x0, x1, x2, x3) be a polynomial of BHK-type of
degree h with weights (q0, q1, q2, q3). As in part (i) of Definition 2.1, let A be the 4×4 associated ex-
ponent matrix of FA, which is formed by placing the exponent of xj from the i-th term in the position
(i, j). (Note that we are indexing nontraditionally with 0 ≤ i, j ≤ 3.) Now using AT , the transpose
of A, we can reverse this process and form the mirror polynomial FAT = FAT (x0, x1, x2, x3). This
polynomial will also be of BHK-type, with some degree hT and weights (qT0 , q

T
1 , q

T
2 , q

T
3 ). Note that

the mirror polynomial of FAT is the original polynomial FA.

In general it is true that h · hT | det(A), but det(A) (which we can assume to be positive without
loss of generality) can be greater than h · hT . In this paper we will be studying polynomials that
satisfy the additional condition

(�) det(A) = h · hT .

Note that this restriction still includes many polynomials, such as the following example.

Example. Let FA = x20 + x31 + x72x3 + x363 . This polynomial is of BHK-type with degree h = 36
and weights (q0, q1, q2, q3) = (18, 12, 5, 1).

Using the exponents of each monomial of FA, we form the 4× 4 matrix

A =



2 0 0 0
0 3 0 0
0 0 7 1
0 0 0 36


 .

Taking the transpose of matrix A, we have

AT =



2 0 0 0
0 3 0 0
0 0 7 0
0 0 1 36


 .

Now using matrix AT , we can reverse the process above to form the polynomial

FAT = x20 + x31 + x72 + x2x
36
3 .

This is the mirror polynomial of FA. Notice FAT is also of BHK-type, but with degree hT = 42
and weights (q0T , q1T , q2T , q3T ) = (21, 14, 6, 1).

Finally, we let d be the least common denominator of all nonzero entries of A−1, which will play
an important role in the calculation of the Picard number below.

Lemma 2.3. Let h be the degree of a polynomial FA of BHK-type and d be as above. Then h | d.

Proof. From part (iii) of Definition 2.1 we know that Av = e where v = ( q0h ,
q1
h ,

q2
h ,

q3
h )

tr and

e = (1, 1, 1, 1)tr. Since A is invertible, then we can write v = A−1e. Now multiplying both sides
by d, we have dv = dA−1e. By definition of d the right hand side is a vector with integer entries.
Since the weights do not have any common factors, then for dv to have integer entries, h | d must
be true. �

Calculating the Picard number. Consider 4-tuples of the form (a0, a1, a2, a3) ∈ (Z/d)4. De-
fine

Ad = {(a0, a1, a2, a3) ∈ (Z/d)4 | a0 + a1 + a2 + a3 ≡ 0 (mod d) and ai �≡ 0 (mod d) for all i}.
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Theorem 3.8. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), 
and let A be its associated exponent matrix. Suppose as in (⋆) that det(A) = h · hT . Then
               if and only if                         for some

Proof. Note that                                            if and only if the equivalence class of −1 
modulo h, written [−1], is an element of the subgroup of          generated by powers of b modulo 
h, written        Hence it is sufficient to prove Id(b) = {} if and only if                 First suppose    
                  Then the double sum for                              as the generator of G and some 
(t,d) = 1 is

Note that the first sum equals 1 as shown in the proof of Theorem 3.3. In the rest of the sums,    
            (mod h), thus each sum must equal 2. Hence the double sum is equal to 2f − 1, and not 2f. 

Now suppose                  Also suppose for contradiction                This implies that there 
exists (t, d) = 1 such that

By Lemma 3.7, this implies that the double sum equals either 2f − 1 or 2f + 1.

Case 1: Suppose the sum is 2f − 1. Then          (mod h) for some j, but                         for 
all k. So                       Thus                          for all k, which implies that                  
This is a contradiction, hence the sum cannot equal 2f − 1.

In fact, it is known that this sum equals 1 only when           (mod h) and equals 3 only when 
           (mod h). Since p has order f in          , then the powers pj are distinct modulo d for all 
0 < j < f − 1. This implies that for a fixed t, the products tpj will be distinct for all 0 < j < f 
− 1. Thus the double sum on the right hand side of equation (5) contains f sums, which include 
some that equal 2, at most one that equals 1, and at most one that equals 3. If one of these 
sums equals 1 but none equal 3, then the double sum will equal 2f − 1. If the one of these sums 
equals 3 but none equal 1, then the double sum will equal 2f + 1. If the one of the sums equals 1 
and another equals 3, then the double sum will equal 2f. And finally if the sums all equal 2, then 
the double sum will equal 2f.
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Now suppose α = (a0, a1, a2, a3) ∈ Id(b). Then there exists (t, d) = 1 such that

(4)

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
�= 2f.

Let k ∈ Z such that (k, h) = 1. This implies kα ∈ Id(0). By Lemma 3.2, there exists K ∈ Z such
that K ≡ k (mod h) and (K, d) = 1. Let K ′ ∈ Z be a solution to K ′K ≡ 1 (mod d). Now we
examine the double sum

3∑
i=0

f−1∑
j=0

〈
t′kaib

j

d

〉

where t′ = K ′t. Then this sum will be

3∑
i=0

f−1∑
j=0

〈
tK ′kaib

j

d

〉
=

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
.

By equation (2) above, this sum does not equal 2f . Therefore kα ∈ Id(b), as required. This proves
that if α ∈ Id(b), then Id(b) = Id(0). �

Lemma 3.7. Let G = 〈α〉 with α = (a0, a1, a2, a3). Then we have

(5)
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f−1∑
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〈
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j

d

〉
= 2f − 1, 2f, or 2f + 1.

Proof. Using the fact that (q0, q1, q2, q3) belongs to the 95 weight systems, one may show that
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d

〉
= 1, 2, or 3 for all (t′, d) = 1.
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h, written [−1], is an element of the subgroup of (Z/d)∗ generated by powers of b modulo h, written
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〉
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Note that the first sum equals 1 as shown in the proof of Theorem 3.3. In the rest of the sums,
bj �≡ −1 (mod h), thus each sum must equal 2. Hence the double sum is equal to 2f − 1, and not
2f . Therefore α ∈ Id(b), so Id(b) �= {}.

Now suppose [−1] ∈ 〈[b]〉. Also suppose for contradiction Id(b) �= {}. This implies that there exists
(t, d) = 1 such that
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By Lemma 3.7, this implies that the double sum equals either 2f − 1 or 2f + 1.

Case 1 : Suppose the sum is 2f − 1. Then tbj ≡ 1 (mod h) for some j, but tbk �≡ −1 (mod h) for
all k. So t ≡ b−j (mod h). Thus bk−j �≡ −1 (mod h) for all k, which implies that [−1] �∈ 〈[b]〉. This
is a contradiction, hence the sum cannot equal 2f − 1.

Case 2 : Suppose the sum is 2f + 1. Then tbj ≡ −1 (mod h) for some j, but tbk �≡ 1 (mod h) for
all k. So t ≡ −b−j (mod h). Thus −bk−j �≡ 1 (mod h) implies bk−j �≡ −1 (mod h) for all k. As
above, this is a contradiction. Thus, the sum is not 2f + 1.

Therefore, the sum must equal 2f , and hence Id(b) = {}. �

Corollary 3.9. Let FA be as in Theorem 3.8 and p be a prime such that p � d. Let Xp be the K3
surface arising from FA defined over Fp. Then the Picard number ρ(Xp) of Xp is given by

ρ(Xp) =

{
22 if pfT /2 ≡ −1 (mod hT )

22− φ(hT ) if f is odd or pfT /2 �≡ −1 (mod hT )

where fT denotes the order of p modulo hT .

Proof. If pfT /2 ≡ −1 (mod h)T , then by Theorem 3.8 we know that Id(p) = {}. Hence #(Id(p) ∩
GT ) = 0. On the other hand, if fT is odd or pfT /2 �≡ −1 (mod hT ), then we know that Id(p) �=
{}. Hence by Proposition 3.6 it must be that Id(p) = Id(0). Thus by Corollary 3.4 we have
#(Id(p) ∩GT ) = #(Id(0) ∩GT ) = φ(hT ). �

Acknowledgements

This research was conducted at California State University, Fullerton, under the direction of Dr.
Christopher Lyons. We are grateful to acknowledge the support of the CSUF Math Summer
Research Program.

References

[1] T. Kelly. Picard Ranks of K3 Surfaces of BHK Type. Preprint.
[2] T. Yonemura. Hypersurface Simple K3 Singularities. Tôhoku Math. J. 42 (1990), 351-380.

PICARD NUMBERS OF CERTAIN K3 SURFACES 7

With t = 1 we have
3∑

i=0

〈
qi
h

〉
+

3∑
i=0

〈
qib

h

〉
+ · · ·+

3∑
i=0

〈
qib

f−1

h

〉
.

Note that the first sum equals 1 as shown in the proof of Theorem 3.3. In the rest of the sums,
bj �≡ −1 (mod h), thus each sum must equal 2. Hence the double sum is equal to 2f − 1, and not
2f . Therefore α ∈ Id(b), so Id(b) �= {}.

Now suppose [−1] ∈ 〈[b]〉. Also suppose for contradiction Id(b) �= {}. This implies that there exists
(t, d) = 1 such that

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
�= 2f.

By Lemma 3.7, this implies that the double sum equals either 2f − 1 or 2f + 1.

Case 1 : Suppose the sum is 2f − 1. Then tbj ≡ 1 (mod h) for some j, but tbk �≡ −1 (mod h) for
all k. So t ≡ b−j (mod h). Thus bk−j �≡ −1 (mod h) for all k, which implies that [−1] �∈ 〈[b]〉. This
is a contradiction, hence the sum cannot equal 2f − 1.

Case 2 : Suppose the sum is 2f + 1. Then tbj ≡ −1 (mod h) for some j, but tbk �≡ 1 (mod h) for
all k. So t ≡ −b−j (mod h). Thus −bk−j �≡ 1 (mod h) implies bk−j �≡ −1 (mod h) for all k. As
above, this is a contradiction. Thus, the sum is not 2f + 1.

Therefore, the sum must equal 2f , and hence Id(b) = {}. �

Corollary 3.9. Let FA be as in Theorem 3.8 and p be a prime such that p � d. Let Xp be the K3
surface arising from FA defined over Fp. Then the Picard number ρ(Xp) of Xp is given by

ρ(Xp) =

{
22 if pfT /2 ≡ −1 (mod hT )

22− φ(hT ) if f is odd or pfT /2 �≡ −1 (mod hT )

where fT denotes the order of p modulo hT .

Proof. If pfT /2 ≡ −1 (mod h)T , then by Theorem 3.8 we know that Id(p) = {}. Hence #(Id(p) ∩
GT ) = 0. On the other hand, if fT is odd or pfT /2 �≡ −1 (mod hT ), then we know that Id(p) �=
{}. Hence by Proposition 3.6 it must be that Id(p) = Id(0). Thus by Corollary 3.4 we have
#(Id(p) ∩GT ) = #(Id(0) ∩GT ) = φ(hT ). �

Acknowledgements

This research was conducted at California State University, Fullerton, under the direction of Dr.
Christopher Lyons. We are grateful to acknowledge the support of the CSUF Math Summer
Research Program.

References

[1] T. Kelly. Picard Ranks of K3 Surfaces of BHK Type. Preprint.
[2] T. Yonemura. Hypersurface Simple K3 Singularities. Tôhoku Math. J. 42 (1990), 351-380.

PICARD NUMBERS OF CERTAIN K3 SURFACES 7

With t = 1 we have
3∑

i=0

〈
qi
h

〉
+

3∑
i=0

〈
qib

h

〉
+ · · ·+

3∑
i=0

〈
qib

f−1

h

〉
.

Note that the first sum equals 1 as shown in the proof of Theorem 3.3. In the rest of the sums,
bj �≡ −1 (mod h), thus each sum must equal 2. Hence the double sum is equal to 2f − 1, and not
2f . Therefore α ∈ Id(b), so Id(b) �= {}.

Now suppose [−1] ∈ 〈[b]〉. Also suppose for contradiction Id(b) �= {}. This implies that there exists
(t, d) = 1 such that

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
�= 2f.

By Lemma 3.7, this implies that the double sum equals either 2f − 1 or 2f + 1.

Case 1 : Suppose the sum is 2f − 1. Then tbj ≡ 1 (mod h) for some j, but tbk �≡ −1 (mod h) for
all k. So t ≡ b−j (mod h). Thus bk−j �≡ −1 (mod h) for all k, which implies that [−1] �∈ 〈[b]〉. This
is a contradiction, hence the sum cannot equal 2f − 1.

Case 2 : Suppose the sum is 2f + 1. Then tbj ≡ −1 (mod h) for some j, but tbk �≡ 1 (mod h) for
all k. So t ≡ −b−j (mod h). Thus −bk−j �≡ 1 (mod h) implies bk−j �≡ −1 (mod h) for all k. As
above, this is a contradiction. Thus, the sum is not 2f + 1.

Therefore, the sum must equal 2f , and hence Id(b) = {}. �

Corollary 3.9. Let FA be as in Theorem 3.8 and p be a prime such that p � d. Let Xp be the K3
surface arising from FA defined over Fp. Then the Picard number ρ(Xp) of Xp is given by

ρ(Xp) =

{
22 if pfT /2 ≡ −1 (mod hT )

22− φ(hT ) if f is odd or pfT /2 �≡ −1 (mod hT )

where fT denotes the order of p modulo hT .

Proof. If pfT /2 ≡ −1 (mod h)T , then by Theorem 3.8 we know that Id(p) = {}. Hence #(Id(p) ∩
GT ) = 0. On the other hand, if fT is odd or pfT /2 �≡ −1 (mod hT ), then we know that Id(p) �=
{}. Hence by Proposition 3.6 it must be that Id(p) = Id(0). Thus by Corollary 3.4 we have
#(Id(p) ∩GT ) = #(Id(0) ∩GT ) = φ(hT ). �

Acknowledgements

This research was conducted at California State University, Fullerton, under the direction of Dr.
Christopher Lyons. We are grateful to acknowledge the support of the CSUF Math Summer
Research Program.

References

[1] T. Kelly. Picard Ranks of K3 Surfaces of BHK Type. Preprint.
[2] T. Yonemura. Hypersurface Simple K3 Singularities. Tôhoku Math. J. 42 (1990), 351-380.
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Now suppose α = (a0, a1, a2, a3) ∈ Id(b). Then there exists (t, d) = 1 such that

(4)
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j

d

〉
�= 2f.

Let k ∈ Z such that (k, h) = 1. This implies kα ∈ Id(0). By Lemma 3.2, there exists K ∈ Z such
that K ≡ k (mod h) and (K, d) = 1. Let K ′ ∈ Z be a solution to K ′K ≡ 1 (mod d). Now we
examine the double sum

3∑
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f−1∑
j=0

〈
t′kaib

j

d

〉

where t′ = K ′t. Then this sum will be

3∑
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〉
=
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j

d

〉
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By equation (2) above, this sum does not equal 2f . Therefore kα ∈ Id(b), as required. This proves
that if α ∈ Id(b), then Id(b) = Id(0). �

Lemma 3.7. Let G = 〈α〉 with α = (a0, a1, a2, a3). Then we have

(5)

3∑
i=0

f−1∑
j=0

〈
taip

j

d

〉
= 2f − 1, 2f, or 2f + 1.

Proof. Using the fact that (q0, q1, q2, q3) belongs to the 95 weight systems, one may show that

3∑
i=0

〈
t′ai
d

〉
= 1, 2, or 3 for all (t′, d) = 1.

In fact, it is known that this sum equals 1 only when t′ ≡ 1 (mod h) and equals 3 only when
t′ ≡ −1 (mod h). Since p has order f in (Z/d)∗, then the powers pj are distinct modulo d for all
0 < j < f −1. This implies that for a fixed t, the products tpj will be distinct for all 0 < j < f −1.
Thus the double sum on the right hand side of equation (5) contains f sums, which include some
that equal 2, at most one that equals 1, and at most one that equals 3. If one of these sums equals
1 but none equal 3, then the double sum will equal 2f − 1. If the one of these sums equals 3 but
none equal 1, then the double sum will equal 2f + 1. If the one of the sums equals 1 and another
equals 3, then the double sum will equal 2f . And finally if the sums all equal 2, then the double
sum will equal 2f . �

Theorem 3.8. Let FA be a polynomial of BHK-type of degree h and weights (q0, q1, q2, q3), and let
A be its associated exponent matrix. Suppose as in (�) that det(A) = h · hT . Then Id(b) = {} if
and only if bk ≡ −1 (mod h) for some k ∈ Z.

Proof. Note that bk ≡ −1 (mod h) for some k ∈ Z if and only if the equivalence class of −1 modulo
h, written [−1], is an element of the subgroup of (Z/d)∗ generated by powers of b modulo h, written
〈[b]〉. Hence it is sufficient to prove Id(b) = {} if and only if [−1] ∈ 〈[b]〉. First suppose [−1] �∈ 〈[b]〉.
Then the double sum for α = ( q0dh , q1dh , q2dh , q3dh ) as the generator of G and some (t, d) = 1 is

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
=

f−1∑
j=0

3∑
i=0

〈
tqib

j

h

〉
.

With t = 1 we have
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Polynomials and their mirrors. Let FA = FA(x0, x1, x2, x3) be a polynomial of BHK-type of
degree h with weights (q0, q1, q2, q3). As in part (i) of Definition 2.1, let A be the 4×4 associated ex-
ponent matrix of FA, which is formed by placing the exponent of xj from the i-th term in the position
(i, j). (Note that we are indexing nontraditionally with 0 ≤ i, j ≤ 3.) Now using AT , the transpose
of A, we can reverse this process and form the mirror polynomial FAT = FAT (x0, x1, x2, x3). This
polynomial will also be of BHK-type, with some degree hT and weights (qT0 , q

T
1 , q

T
2 , q

T
3 ). Note that

the mirror polynomial of FAT is the original polynomial FA.

In general it is true that h · hT | det(A), but det(A) (which we can assume to be positive without
loss of generality) can be greater than h · hT . In this paper we will be studying polynomials that
satisfy the additional condition

(�) det(A) = h · hT .

Note that this restriction still includes many polynomials, such as the following example.

Example. Let FA = x20 + x31 + x72x3 + x363 . This polynomial is of BHK-type with degree h = 36
and weights (q0, q1, q2, q3) = (18, 12, 5, 1).

Using the exponents of each monomial of FA, we form the 4× 4 matrix

A =



2 0 0 0
0 3 0 0
0 0 7 1
0 0 0 36


 .

Taking the transpose of matrix A, we have

AT =



2 0 0 0
0 3 0 0
0 0 7 0
0 0 1 36


 .

Now using matrix AT , we can reverse the process above to form the polynomial

FAT = x20 + x31 + x72 + x2x
36
3 .

This is the mirror polynomial of FA. Notice FAT is also of BHK-type, but with degree hT = 42
and weights (q0T , q1T , q2T , q3T ) = (21, 14, 6, 1).

Finally, we let d be the least common denominator of all nonzero entries of A−1, which will play
an important role in the calculation of the Picard number below.

Lemma 2.3. Let h be the degree of a polynomial FA of BHK-type and d be as above. Then h | d.

Proof. From part (iii) of Definition 2.1 we know that Av = e where v = ( q0h ,
q1
h ,

q2
h ,

q3
h )

tr and

e = (1, 1, 1, 1)tr. Since A is invertible, then we can write v = A−1e. Now multiplying both sides
by d, we have dv = dA−1e. By definition of d the right hand side is a vector with integer entries.
Since the weights do not have any common factors, then for dv to have integer entries, h | d must
be true. �

Calculating the Picard number. Consider 4-tuples of the form (a0, a1, a2, a3) ∈ (Z/d)4. De-
fine

Ad = {(a0, a1, a2, a3) ∈ (Z/d)4 | a0 + a1 + a2 + a3 ≡ 0 (mod d) and ai �≡ 0 (mod d) for all i}.
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Proof.                                  then by Theorem 3.8 we know that                 Hence 
                           On the other hand, if                                               , then we know 
that           {}. Hence by Proposition 3.6 it must be that Id(p) = Id(0). Thus by Corollary 3.4 
we have 
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By Lemma 3.7, this implies that the double sum equals either 2f − 1 or 2f + 1.
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Therefore, the sum must equal 2f , and hence Id(b) = {}. �

Corollary 3.9. Let FA be as in Theorem 3.8 and p be a prime such that p � d. Let Xp be the K3
surface arising from FA defined over Fp. Then the Picard number ρ(Xp) of Xp is given by

ρ(Xp) =

{
22 if pfT /2 ≡ −1 (mod hT )

22− φ(hT ) if f is odd or pfT /2 �≡ −1 (mod hT )

where fT denotes the order of p modulo hT .

Proof. If pfT /2 ≡ −1 (mod h)T , then by Theorem 3.8 we know that Id(p) = {}. Hence #(Id(p) ∩
GT ) = 0. On the other hand, if fT is odd or pfT /2 �≡ −1 (mod hT ), then we know that Id(p) �=
{}. Hence by Proposition 3.6 it must be that Id(p) = Id(0). Thus by Corollary 3.4 we have
#(Id(p) ∩GT ) = #(Id(0) ∩GT ) = φ(hT ). �
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PICARD NUMBERS OF CERTAIN K3 SURFACES 7

With t = 1 we have
3∑

i=0

〈
qi
h

〉
+

3∑
i=0

〈
qib

h

〉
+ · · ·+

3∑
i=0

〈
qib

f−1

h

〉
.

Note that the first sum equals 1 as shown in the proof of Theorem 3.3. In the rest of the sums,
bj �≡ −1 (mod h), thus each sum must equal 2. Hence the double sum is equal to 2f − 1, and not
2f . Therefore α ∈ Id(b), so Id(b) �= {}.

Now suppose [−1] ∈ 〈[b]〉. Also suppose for contradiction Id(b) �= {}. This implies that there exists
(t, d) = 1 such that

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
�= 2f.

By Lemma 3.7, this implies that the double sum equals either 2f − 1 or 2f + 1.

Case 1 : Suppose the sum is 2f − 1. Then tbj ≡ 1 (mod h) for some j, but tbk �≡ −1 (mod h) for
all k. So t ≡ b−j (mod h). Thus bk−j �≡ −1 (mod h) for all k, which implies that [−1] �∈ 〈[b]〉. This
is a contradiction, hence the sum cannot equal 2f − 1.

Case 2 : Suppose the sum is 2f + 1. Then tbj ≡ −1 (mod h) for some j, but tbk �≡ 1 (mod h) for
all k. So t ≡ −b−j (mod h). Thus −bk−j �≡ 1 (mod h) implies bk−j �≡ −1 (mod h) for all k. As
above, this is a contradiction. Thus, the sum is not 2f + 1.

Therefore, the sum must equal 2f , and hence Id(b) = {}. �

Corollary 3.9. Let FA be as in Theorem 3.8 and p be a prime such that p � d. Let Xp be the K3
surface arising from FA defined over Fp. Then the Picard number ρ(Xp) of Xp is given by

ρ(Xp) =

{
22 if pfT /2 ≡ −1 (mod hT )

22− φ(hT ) if f is odd or pfT /2 �≡ −1 (mod hT )

where fT denotes the order of p modulo hT .

Proof. If pfT /2 ≡ −1 (mod h)T , then by Theorem 3.8 we know that Id(p) = {}. Hence #(Id(p) ∩
GT ) = 0. On the other hand, if fT is odd or pfT /2 �≡ −1 (mod hT ), then we know that Id(p) �=
{}. Hence by Proposition 3.6 it must be that Id(p) = Id(0). Thus by Corollary 3.4 we have
#(Id(p) ∩GT ) = #(Id(0) ∩GT ) = φ(hT ). �

Acknowledgements

This research was conducted at California State University, Fullerton, under the direction of Dr.
Christopher Lyons. We are grateful to acknowledge the support of the CSUF Math Summer
Research Program.

References

[1] T. Kelly. Picard Ranks of K3 Surfaces of BHK Type. Preprint.
[2] T. Yonemura. Hypersurface Simple K3 Singularities. Tôhoku Math. J. 42 (1990), 351-380.
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PICARD NUMBERS OF CERTAIN K3 SURFACES 7

With t = 1 we have
3∑

i=0

〈
qi
h

〉
+

3∑
i=0

〈
qib

h

〉
+ · · ·+

3∑
i=0

〈
qib

f−1

h

〉
.

Note that the first sum equals 1 as shown in the proof of Theorem 3.3. In the rest of the sums,
bj �≡ −1 (mod h), thus each sum must equal 2. Hence the double sum is equal to 2f − 1, and not
2f . Therefore α ∈ Id(b), so Id(b) �= {}.

Now suppose [−1] ∈ 〈[b]〉. Also suppose for contradiction Id(b) �= {}. This implies that there exists
(t, d) = 1 such that

3∑
i=0

f−1∑
j=0

〈
taib

j

d

〉
�= 2f.

By Lemma 3.7, this implies that the double sum equals either 2f − 1 or 2f + 1.

Case 1 : Suppose the sum is 2f − 1. Then tbj ≡ 1 (mod h) for some j, but tbk �≡ −1 (mod h) for
all k. So t ≡ b−j (mod h). Thus bk−j �≡ −1 (mod h) for all k, which implies that [−1] �∈ 〈[b]〉. This
is a contradiction, hence the sum cannot equal 2f − 1.

Case 2 : Suppose the sum is 2f + 1. Then tbj ≡ −1 (mod h) for some j, but tbk �≡ 1 (mod h) for
all k. So t ≡ −b−j (mod h). Thus −bk−j �≡ 1 (mod h) implies bk−j �≡ −1 (mod h) for all k. As
above, this is a contradiction. Thus, the sum is not 2f + 1.

Therefore, the sum must equal 2f , and hence Id(b) = {}. �

Corollary 3.9. Let FA be as in Theorem 3.8 and p be a prime such that p � d. Let Xp be the K3
surface arising from FA defined over Fp. Then the Picard number ρ(Xp) of Xp is given by

ρ(Xp) =

{
22 if pfT /2 ≡ −1 (mod hT )

22− φ(hT ) if f is odd or pfT /2 �≡ −1 (mod hT )

where fT denotes the order of p modulo hT .

Proof. If pfT /2 ≡ −1 (mod h)T , then by Theorem 3.8 we know that Id(p) = {}. Hence #(Id(p) ∩
GT ) = 0. On the other hand, if fT is odd or pfT /2 �≡ −1 (mod hT ), then we know that Id(p) �=
{}. Hence by Proposition 3.6 it must be that Id(p) = Id(0). Thus by Corollary 3.4 we have
#(Id(p) ∩GT ) = #(Id(0) ∩GT ) = φ(hT ). �

Acknowledgements

This research was conducted at California State University, Fullerton, under the direction of Dr.
Christopher Lyons. We are grateful to acknowledge the support of the CSUF Math Summer
Research Program.

References

[1] T. Kelly. Picard Ranks of K3 Surfaces of BHK Type. Preprint.
[2] T. Yonemura. Hypersurface Simple K3 Singularities. Tôhoku Math. J. 42 (1990), 351-380.
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Note that the first sum equals 1 as shown in the proof of Theorem 3.3. In the rest of the sums,
bj �≡ −1 (mod h), thus each sum must equal 2. Hence the double sum is equal to 2f − 1, and not
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Now suppose [−1] ∈ 〈[b]〉. Also suppose for contradiction Id(b) �= {}. This implies that there exists
(t, d) = 1 such that
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By Lemma 3.7, this implies that the double sum equals either 2f − 1 or 2f + 1.
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Corollary 3.9. Let FA be as in Theorem 3.8 and p be a prime such that p � d. Let Xp be the K3
surface arising from FA defined over Fp. Then the Picard number ρ(Xp) of Xp is given by

ρ(Xp) =

{
22 if pfT /2 ≡ −1 (mod hT )

22− φ(hT ) if f is odd or pfT /2 �≡ −1 (mod hT )

where fT denotes the order of p modulo hT .

Proof. If pfT /2 ≡ −1 (mod h)T , then by Theorem 3.8 we know that Id(p) = {}. Hence #(Id(p) ∩
GT ) = 0. On the other hand, if fT is odd or pfT /2 �≡ −1 (mod hT ), then we know that Id(p) �=
{}. Hence by Proposition 3.6 it must be that Id(p) = Id(0). Thus by Corollary 3.4 we have
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2 BORA OLCKEN ADVISOR: CHRISTOPHER LYONS

Polynomials and their mirrors. Let FA = FA(x0, x1, x2, x3) be a polynomial of BHK-type of
degree h with weights (q0, q1, q2, q3). As in part (i) of Definition 2.1, let A be the 4×4 associated ex-
ponent matrix of FA, which is formed by placing the exponent of xj from the i-th term in the position
(i, j). (Note that we are indexing nontraditionally with 0 ≤ i, j ≤ 3.) Now using AT , the transpose
of A, we can reverse this process and form the mirror polynomial FAT = FAT (x0, x1, x2, x3). This
polynomial will also be of BHK-type, with some degree hT and weights (qT0 , q

T
1 , q

T
2 , q

T
3 ). Note that

the mirror polynomial of FAT is the original polynomial FA.

In general it is true that h · hT | det(A), but det(A) (which we can assume to be positive without
loss of generality) can be greater than h · hT . In this paper we will be studying polynomials that
satisfy the additional condition

(�) det(A) = h · hT .

Note that this restriction still includes many polynomials, such as the following example.

Example. Let FA = x20 + x31 + x72x3 + x363 . This polynomial is of BHK-type with degree h = 36
and weights (q0, q1, q2, q3) = (18, 12, 5, 1).

Using the exponents of each monomial of FA, we form the 4× 4 matrix

A =



2 0 0 0
0 3 0 0
0 0 7 1
0 0 0 36


 .

Taking the transpose of matrix A, we have

AT =



2 0 0 0
0 3 0 0
0 0 7 0
0 0 1 36


 .

Now using matrix AT , we can reverse the process above to form the polynomial

FAT = x20 + x31 + x72 + x2x
36
3 .

This is the mirror polynomial of FA. Notice FAT is also of BHK-type, but with degree hT = 42
and weights (q0T , q1T , q2T , q3T ) = (21, 14, 6, 1).

Finally, we let d be the least common denominator of all nonzero entries of A−1, which will play
an important role in the calculation of the Picard number below.

Lemma 2.3. Let h be the degree of a polynomial FA of BHK-type and d be as above. Then h | d.

Proof. From part (iii) of Definition 2.1 we know that Av = e where v = ( q0h ,
q1
h ,

q2
h ,

q3
h )

tr and

e = (1, 1, 1, 1)tr. Since A is invertible, then we can write v = A−1e. Now multiplying both sides
by d, we have dv = dA−1e. By definition of d the right hand side is a vector with integer entries.
Since the weights do not have any common factors, then for dv to have integer entries, h | d must
be true. �

Calculating the Picard number. Consider 4-tuples of the form (a0, a1, a2, a3) ∈ (Z/d)4. De-
fine

Ad = {(a0, a1, a2, a3) ∈ (Z/d)4 | a0 + a1 + a2 + a3 ≡ 0 (mod d) and ai �≡ 0 (mod d) for all i}.
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A Demonstration of the Application of Geometric Series to  Certain 
Inequalities

We demonstrate here a method of solving certain inequalities by representing terms as 
the sums of convergent geometric series. This method can make otherwise complex proofs 
much simpler and, for applicable inequalities, is a viable alternative to standard algebraic and 
induction proofs. To demonstrate, consider the following theorem:

Then

Theorem 1.

A typical proof might consist of using mathematical induction on n, and complicated 
algebra. Here we demonstrate an alternative approach using geometric series.

First, it is important to note that if this theorem holds in the case of s = 1, then it holds 
in general. To show this, first divide both sides of (1) by s, which yields:
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Abstract

I. Introduction

In a paper published in 2012 in the American Mathematical Monthly, C. Mortici used a 
classical technique to solve some inequalities by converting terms to geometric series. In this 
paper, we apply the same method on an inequality relating properties of a polygon. The result 
uses geometric series convergence and the generalized means inequality.
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Abstract

In a paper published in 2012 in the American Mathematical Monthly,
C. Mortici used a classical technique to solve some inequalities by convert-
ing terms to geometric series. In this paper, we apply the same method on
an inequality relating properties of a polygon. The result uses geometric
series convergence and the generalized means inequality.

We demonstrate here a method of solving certain inequalities by represent-
ing terms as the sums of convergent geometric series. This method can make
otherwise complex proofs much simpler and, for applicable inequalities, is a vi-
able alternative to standard algebraic and induction proofs. To demonstrate,
consider the following theorem:

Theorem 1. Let a1, a2, ... , an be the lengths of the sides of a given n-gon,
n ≥ 3. Let

s = a1 + a2 + ...+ an. (1)

Then
a1

s− 2a1
+

a2
s− 2a2

+ ...+
an

s− 2an
≥ n

n− 2
. (2)

A typical proof might consist of using mathematical induction on n, and
complicated algebra. Here we demonstrate an alternative approach using geo-
metric series.

First, it is important to note that if this theorem holds in the case of s = 1,
then it holds in general. To show this, first divide both sides of (1) by s, which
yields:

1 =
a1
s

+
a2
s

+ ...+
an
s
.

Denote ai

s by a′i, for i = 1, 2, ..., n so that 1 = a′1 + a′2 + ...+ a′n.

Multiplying each term on the left side of (2) by
1
s
1
s

gives:

a′1
1− 2a′1

+
a′2

1− 2a′2
+ ...+

a′n
1− 2a′n

≥ n

n− 2
.

If this inequality holds, then (2) also holds. Note that this is (2) in the
case s = 1. In geometric terms, the polygon has been scaled down to have a
perimeter of 1. Because this technique can be applied regardless of the value of
s, we need only prove the case where s = 1.
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perimeter of 1. Because this technique can be applied regardless of the value of
s, we need only prove the case where s = 1.
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Comparison of False Discovery Rate and p-value in Microarray 
Experiments

Microarray data is used to measure gene expression levels of a genome. Problems arising in 
biological and medical studies have required the need to explore genes through gene expression 
data. However, many standard statistical procedures are unreliable due to the structure of the 
microarray data. The issue lies in the dimensionality of the microarray. In general, the data is 
stored in an n × p matrix, where n is the sample size and p is the number of variables, and n 
is much bigger compared to p. For example, we might want to compare three treatments (p = 3) 
using n = 10 observations for each treatment. However, in microarray data, the sample size n 
(e.g., number of arrays) is much smaller than the number of genes p (e.g., 23,000). This kind 
of data structure is known as “cursed dimensionality” because most of the current statistical 
methods cannot be used to make inference about this data.

The F test determines whether or not the means of three or more populations are equal. 
The F test is valid if (1) all populations of interest are normally distributed, (2) samples are 
randomly and independently selected from each population, and (3) populations have equal 
standard deviations (or variances). The F test is robust against normality as long as the 
number of sample sizes are large, but it is not robust if populations have unequal variances 
with unequal sample sizes. Failure to meet these assumptions changes the Type I error rate. 
That means the actual Type I error may be greater or less than significance level α, depending 
on which assumptions are violated.

If the independence of samples are violated, then the F test shouldn’t be used to 

Adam Walder
Advisor: Dr. Gulhan Bourget

Abstract

I. Introduction

The high dimensional structure of Microarray data complicates several aspects of statistical 
inference. Since current statistical methods are generally for “small p (number of columns), 
and large n (number of obervations)”, these methods can be insufficient to draw valid 
conclusions for microarray data. Nevertheless, some of these methods, such as Analysis of 
Variance (ANOVA ) are still widely used. F test is used in ANOVA. One of the assumptions 
of F test is that populations (genes) are assumed to be independent. This assumption is 
obviously violated in microarray experiments because gene-gene interactions can naturally 
occur. In this paper, we use an effective “column” size idea to take correlations (interactions) 
among genes into account to modify the F test. We consider various magnitudes of correlation 
among genes in Monte Carlo simulation studies. We compare the proposed test (F-MOD) with 
the classical F test through p-value and False Discovery Rate (FDR). We also discuss the use 
of FDR in comparison with p-value.

Department of Mathematics, California State University, Fullerton



176

The row vector     represents the jth multivariate observation. The matrix X represents p 
genes each having n observations.

Now, consider a microarray experiment of n1 and n2 samples from populations 1 and 2, 
respectively. For example, population 1 can represent the disease group, while population 2 
can represent the healthy group. Suppose that the expression levels of p genes are measured 
and matrix representations of populations 1 and 2 are defined in (1) as X and Y.

The observations on p variables can be arranged as follows:

Our goal in this paper is to only make inferences about the differences of the vector mean 
of the populations. That is, we want to know if                or equivalently if               
However, one further can investigate which means are different if the hypothesis of  
is concluded. We need to make some assumptions to provide answers to these questions. 
The assumptions are:

The sample                      is a random sample of n1 from a p-variate population with mean 
vector     and covariance matrix Σ1.
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analyze the data. In nature, gene-gene interactions exist. F-MOD, proposed by [3, 4, 5], takes 
correlation among genes into account in F test. It uses an effective sample size idea. The 
effective sample size formula was originally proposed by Clifford et al. [7], and was improved for 
small sample sizes by Dutilleul (1993) [8]. Also, the same effective sample size formula was used 
in modified F tests to assess multiple correlation between one spatial process and several others 
[9], and to assess correlation between two time series [1]. In this paper, we compare the F - 
MOD test proposed in [6] with F test. Actually, F - MOD in [6] implemented the same effective 
sample size formula described in [8] to compute effective column size not effective sample size.

A single multivariate observation is the collection of measurements on p different variables 
(genes) taken from the same trial (array). If n observations have been obtained, the entire 
data set can be represented in an n × p matrix
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2.2  F Test
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Note that, we test the mean expression of p genes all together not the individual mean 
expressions in (3) - (5). That is, we consider a global test not an individual test.

or equivalently

The classical F test compares the means of the columns of X, and assumes that these 
columns are independent (univariate case). In microarray experiment, we want to compare the 
differences of the p means of X and Y. We have multivariate data structure but univariate F 
and F-MOD tests. Therefore, we need to adopt the data structure from the multivariate to 
univariate case by considering the factor observations as the differences of the data matrices X 
and Y. That is, we compute Xij − Yij , and apply the univariate F test on these observations. 
The F test is defined as
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2.3  F - MOD

2.4 False Discovery Rate

When the assumptions are not satisfied by sample data, there are two general remedies: (1) 
to transform the data so that the assumptions are satisfied, or (2) to develop a modified 
inferential method in which the assumptions are relaxed at the estimation stage, or deviations 
from the assumptions are taken into account at the testing stage.

In linear models, the autocorrelation of errors has an impact on the inefficiency of slope 
estimators and the invalidity of significance levels. When regressors have fixed structure, 
the only source of autocorrelation comes from errors. However, when regressors also have 
random structures, their autocorrelations along with correlations of errors have an impact on 
estimation and testing [2, 3, 4, 5]. Since the autocovariances of stochastic processes bias the 
variance of sample correlation coefficients [10], the incorporation of effective sample size into 
modified t-tests were proposed [7, 8]. The effective sample size    in [7] was defined as

where                were the estimated covariance matrices of X and Y, respectively. Dutilleul 
(1993) proposed an improved effective sample size for small sample sizes [8]. However, the 
effective sample sizes prosed in [7] and [8] behave similarly for large sample sizes. The effective 
sample size in [8] was defined as

where                              is the n × n matrix of ones, and I is the identity matrix.
In this paper, we implement the F-MOD test considered in [6] that used equation (8) 

defined in [8] to compute effective column size to identify differentially expressed genes in 
microarray data. We considered the following steps for F -MOD test in the simulation runs: 
first, we computed the effective column size,    as in equation (8). The estimated covariance 
matrices                  were computed using the raw data of X and Y, respectively. Second, 
we replaced          in the degrees of freedoms of the classical F test defined in (6). Finally, we 
computed the p-value of the global F test in (6) with                             degrees of freedoms 
for the numerator and denominator degrees of freedoms, respectively. Note that, the sample 
size is n1 = n2 = n.

In statistical significance and multiple comparisons, we want to know what is the chance of 
getting “statistically significant” results when the null hypothesis is true. The answer is given 
by computing p-value. However, in genomics studies we have a lot of data, and hence a lot of 
hypotheses to test. For example, in a typical microarray experiment, we might perform 10,000 
separate hypothesis tests. If we use a standard p-value with a significance level of α = 0.05, 
we would expect 10, 000 × 0.05 = 500 genes to be declared “significant” by chance. To control 
false positives, we can adjust p-values for the number of hypothesis tests performed, i.e., 
controlling Type I error rate. Many different methods have been proposed, such as Family 
Wise Error Rate (FWER), which is the probability of at least one Type I error occurring. 
However, when multiple testing is performed, the most natural question is to ask what is the 
chance that the null hypothesis is true when a comparison is “statistically significant”. The 
answer leads to the new multiple testing method called False Discovery Rate (FDR).
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is given by computing p-value. However, in genomics studies we have a lot of data, and
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performed, i.e., controlling Type I error rate. Many different methods have been proposed,

such as Family Wise Error Rate (FWER), which is the probability of at least one Type I

error occurring. However, when multiple testing is performed, the most natural question is

to ask what is the chance that the null hypothesis is true when a comparison is “statistically

significant”. The answer leads to the new multiple testing method called False Discovery

Rate (FDR).
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The FDR is defined as the expected value of the ratio of the number of false positive 
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3 Results and Discussion

Simulation

We generated two multivariate normal distributions: MVN(µ1,Σ1) and MVN(µ2,Σ2), each

with dimension p (genes). The variance covariance matrices are defined as
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where l = σ2/
√
1− ρ2. We can similarly define Σ(−ρ) by replacing ρ by (−ρ) in (11).

The simulation set up for Σ1 and Σ2 has actually sound basis in real microarray data:

(1) weak connections between groups may exist, hence independence between groups is a

reasonable assumption (i.e., off diagonals are 0 matrices); (2) genes are either positively

or negatively correlated within each group (i.e., correlations among genes are either ρ or

−ρ); and (3) the further apart two genes, the less correlation between them (i.e., covariance

matrix in (11)).

We assumed that both populations have equal sample sizes (i.e., n1 = n2), and there

are 10 matrices on the diagonals of Σ1 and Σ2. For example, if p = 100 then there are
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The strict validity of a testing procedure is that the actual p-value, which is the probability of 
rejecting the null hypothesis when in fact the null hypothesis is true, is less than or equal to α. 
However, in simulations there are variability among generated data sets. Hence, strict validity is 
not a reasonable measure. To take variability into account, we can consider the upper limit of the 
approximate 95% confidence interval for the actual p-value. Under binomial distribution model, 
for α and m simulation runs, the approximate 95% confidence interval is
In simulation runs, we took α = 0.01 and 0.05, and m = 10, 000. The upper limits are

Table 2 shows results of FDR for F test and F -MOD test. In Table 2, the F test performs well 
when correlations among genes are negligible or very small. However, F test fails to control 
significance levels as correlation among genes increases. Also, the FDR values rapidly increase 
as the number of genes rise. F-MOD outperforms F test for any combinations of correlation 
among genes,  , number of genes p, and sample size n at any α. F-MOD fails to control 
significance level when p is small (i.e., p = 20). Comparing α values, we see F -MOD behaving 
better for larger α values. Overall, F-MOD controls FDR values by providing values that are 
smaller than α values.

Table 3 shows results of p-values for F test and F -MOD test. The results of p-values are 
very similar to FDR. Hence, we suggest F-MOD to be used when correlations among genes are 
suspected. In such cases, we strongly advise against the use of classical F test. The F -MOD test 
is a univariate test that is easy to compute. In practice, the researchers prefer to use tests that are 
straightforward and robust against violations of assumptions. Hence, F-MOD test is recommended.

3.1 Comparison of Methods

10 matrices on the diagonal of Σ1 and Σ2 with 10 genes in each matrix (i.e., g = 10).

To assess the effects of correlation among genes, we took ρ = 0, 0.1, 0.2, . . . , 0.9 as various

magnitudes of correlations. We also set the variances of each gene at 0.01 (i.e., σ2 = 0.1).

We considered two different significance levels, α = 0.01 and 0.05. The null hypothesis was

set to µ1 = µ2 = (0, 0, 0, . . . , 0)′(p×p), and alternative hypothesis was set to µ1 �= µ2 with

µ1 = (0, 0, . . . , 0)′(p×1) and µ2 = (0.5, . . . , 0.5︸ ︷︷ ︸
0.02�p

, 0, 0, . . . , 0︸ ︷︷ ︸
0.98�p

)′(p×1). More precisely, the first 2% of

the means of the genes were set to 0.5, and the rest were set to 0 in µ2. If 0.02 � p was not

an integer value, then we used ceiling function in R that takes a single numeric argument a

and returns a numeric value containing the smallest integers not less than the corresponding

elements of a.

We wrote and ran multiple simulations in R, which is a free software. We ran 10,000

data sets to compute p-values, and 10,000 data sets to compute FDR values for each values

of ρ. We then drew conclusions about the testing procedures using p-values and FDR.

3.1 Comparison of Methods

The strict validity of a testing procedure is that the actual p-value, which is the probability

of rejecting the null hypothesis when in fact the null hypothesis is true, is less than or

equal to α. However, in simulations there are variability among generated data sets. Hence,
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binomial distribution model, for α and m simulation runs, the approximate 95% confidence

interval is α ± 2
√
α(1− α)/m. In simulation runs, we took α = 0.01 and 0.05, and

m = 10, 000. The upper limits are

α = 0.01 ⇐⇒ 0.01 + 2
√
(0.01 · 0.99)/10, 000 = 0.012 (12)

α = 0.05 ⇐⇒ 0.05 + 2
√
(0.05 · 0.95)/10, 000 = 0.054 (13)

Table 2 shows results of FDR for F test and F -MOD test. In Table 2, the F test performs

well when correlations among genes are negligible or very small. However, F test fails to

control significance levels as correlation among genes increases. Also, the FDR values rapidly

increase as the number of genes rise. F -MOD outperforms F test for any combinations of
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10 matrices on the diagonal of Σ1 and Σ2 with 10 genes in each matrix (i.e., g = 10).

To assess the effects of correlation among genes, we took ρ = 0, 0.1, 0.2, . . . , 0.9 as various

magnitudes of correlations. We also set the variances of each gene at 0.01 (i.e., σ2 = 0.1).

We considered two different significance levels, α = 0.01 and 0.05. The null hypothesis was

set to µ1 = µ2 = (0, 0, 0, . . . , 0)′(p×p), and alternative hypothesis was set to µ1 �= µ2 with

µ1 = (0, 0, . . . , 0)′(p×1) and µ2 = (0.5, . . . , 0.5︸ ︷︷ ︸
0.02�p

, 0, 0, . . . , 0︸ ︷︷ ︸
0.98�p

)′(p×1). More precisely, the first 2% of

the means of the genes were set to 0.5, and the rest were set to 0 in µ2. If 0.02 � p was not

an integer value, then we used ceiling function in R that takes a single numeric argument a

and returns a numeric value containing the smallest integers not less than the corresponding

elements of a.

We wrote and ran multiple simulations in R, which is a free software. We ran 10,000

data sets to compute p-values, and 10,000 data sets to compute FDR values for each values

of ρ. We then drew conclusions about the testing procedures using p-values and FDR.

3.1 Comparison of Methods

The strict validity of a testing procedure is that the actual p-value, which is the probability

of rejecting the null hypothesis when in fact the null hypothesis is true, is less than or

equal to α. However, in simulations there are variability among generated data sets. Hence,

strict validity is not a reasonable measure. To take variability into account, we can consider

the upper limit of the approximate 95% confidence interval for the actual p-value. Under

binomial distribution model, for α and m simulation runs, the approximate 95% confidence

interval is α ± 2
√
α(1− α)/m. In simulation runs, we took α = 0.01 and 0.05, and

m = 10, 000. The upper limits are

α = 0.01 ⇐⇒ 0.01 + 2
√
(0.01 · 0.99)/10, 000 = 0.012 (12)

α = 0.05 ⇐⇒ 0.05 + 2
√
(0.05 · 0.95)/10, 000 = 0.054 (13)

Table 2 shows results of FDR for F test and F -MOD test. In Table 2, the F test performs

well when correlations among genes are negligible or very small. However, F test fails to

control significance levels as correlation among genes increases. Also, the FDR values rapidly

increase as the number of genes rise. F -MOD outperforms F test for any combinations of
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Microarray data has a high dimensional data structure. Therefore, it is challenging to make 
statistical inferences from this type of data. The most widely used statistical methods for 
finding differentially expressed genes from microarray data are univariate, such as ANOVA. 
While univariate methods do not take correlations among genes into account, we should not 
ignore gene-gene interactions in testings.

In this paper, we have compared the F-MOD test proposed in [6] with the classical F test. 
We used FDR and p-values as measures to assess the performance of the tests. Overall, 
the F-MOD outperforms the F test in the presence of mild to strong correlations among 
genes. Also, the number of genes does not affect the performance of the F-MOD. Hence, we 
recommend researchers to use F-MOD test in microarray experiments.

In future work, we shall investigate the performance of the classical t-test with the 
degrees of freedom adjusted using the effective column size idea.

4. Conclusion
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Table 2: FDR when n1 = n2 = n.

p = 20, n = 5

ρ

α Test 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 F 0.010 0.013 0.012 0.012 0.018 0.015 0.022 0.026 0.032 0.037

F -MOD 0.014 0.016 0.015 0.015 0.019 0.013 0.018 0.017 0.016 0.018

0.05 F 0.046 0.049 0.047 0.053 0.061 0.062 0.071 0.078 0.088 0.092

F -MOD 0.052 0.054 0.052 0.053 0.062 0.051 0.060 0.059 0.059 0.057

p=50, n=10

0.01 F 0.008 0.011 0.012 0.014 0.018 0.024 0.033 0.049 0.065 0.077

F -MOD 0.009 0.011 0.011 0.012 0.011 0.014 0.010 0.012 0.013 0.013

0.05 F 0.046 0.052 0.052 0.052 0.065 0.076 0.089 0.101 0.123 0.133

F -MOD 0.048 0.054 0.050 0.049 0.047 0.049 0.050 0.049 0.050 0.046

p=100, n=10

0.01 F 0.009 0.009 0.013 0.017 0.025 0.030 0.040 0.059 0.082 0.109

F -MOD 0.009 0.010 0.011 0.011 0.015 0.013 0.010 0.012 0.013 0.011

0.05 F 0.047 0.046 0.053 0.066 0.073 0.079 0.099 0.119 0.136 0.161

F -MOD 0.049 0.047 0.049 0.056 0.052 0.048 0.049 0.050 0.048 0.045

10

5. Tables



183

Table 3: p-value when n1 = n2 = n.

p = 20, n = 5

ρ

α Test 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 F 0.009 0.010 0.012 0.012 0.016 0.017 0.022 0.028 0.032 0.038

F -MOD 0.012 0.014 0.015 0.017 0.017 0.015 0.016 0.017 0.018 0.016

0.05 F 0.044 0.049 0.051 0.058 0.061 0.068 0.075 0.088 0.093 0.104

F -MOD 0.053 0.056 0.055 0.064 0.059 0.060 0.060 0.064 0.064 0.063

p=50, n=10

0.01 F 0.010 0.010 0.013 0.015 0.019 0.029 0.036 0.048 0.065 0.088

F -MOD 0.011 0.011 0.011 0.011 0.012 0.013 0.013 0.012 0.011 0.010

0.05 F 0.050 0.048 0.059 0.060 0.072 0.084 0.095 0.113 0.133 0.156

F -MOD 0.052 0.048 0.056 0.053 0.053 0.056 0.049 0.050 0.046 0.048

p=100, n=10

0.01 F 0.009 0.011 0.014 0.015 0.022 0.030 0.040 0.058 0.090 0.125

F -MOD 0.010 0.012 0.014 0.012 0.012 0.013 0.011 0.012 0.012 0.012

0.05 F 0.048 0.054 0.056 0.064 0.075 0.090 0.101 0.128 0.154 0.192

F -MOD 0.049 0.053 0.052 0.052 0.053 0.050 0.048 0.048 0.050 0.049
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Abstract

I. Introduction

The chain fountain can simply be described as a looping chain that seemingly defies the 
laws of gravity. A chain fountain arises when a chain is released from the side of a container. 
As the chain falls from the container to the floor, the chain begins to levitate out of its 
container and forms a loop at its peak. We have constructed a realistic model of the chain 
fountain composed of rigid mass-less links connected by circular beaded masses. Simulations 
of this model, implemented in Matlab, allow us to investigate the behavior of the chain in a 
controllable setting.

This natural phenomenon is a result of collisions causing a lift in the chain. Modeling 
the collisions of the masses became the most difficult aspect of our work. The failure of our 
initial collision detection techniques will be discussed, as well as the proper way to realistically 
represent the elastic chain collisions.

The results of our simulations will help make sense of the chain fountain formation. We 
shall provide evidence to demonstrate cases in which a chain fountain fails to occur. We also 
provide intuition for future works in non-conservative chain fountain experiments.

A chain falling from a pot exhibits an interesting course of motion. As the chain slides out of 
the pot towards the floor, a portion of the chain begins to levitate above the side of the pot, 
forming a loop at its peak. We refer to this counter-intuitive phenomenon as a chain fountain. 
This gravity defying feat was introduced in a YouTube video created by physicist Steve 
Mould. After millions had viewed the video, several physicists sought a physical explanation 
for this phenomenon. This inspired several papers [5, 6, 1, 2].

One explanation was offered in a paper written by Biggnins and Warner of Cambridge 
University [1, 2]. They observed that as the chain left the pot, each link of the chain was 
coming into contact with other beads coiled within the cup. They concluded that each 
collision resulted in a kicking motion, or reaction force, causing the chain to experience a lift. 
It was concluded that a certain amount of bending stiffness was needed to experience a proper 
kick that would result in a chain fountain. Biggins and Warner also found, through both 
quantitative and physical experiment, that the height of the chain fountain depends on the 
initial height of the cup.

Department of Mathematics, California State University, Fullerton
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1.1 Purpose of Work

2.1 The Lagrange formalism

2.2 The Single Pendulum

2. The Chain Model

We aim to create and implement a mathematical model of the chain fountain that captures 
the many physical features associated with this phenomenon. By providing animations of our 
numerical simulations, we hope to discover the significance of each included physical feature.

In mechanics, Newton’s laws of motion can be used to form a mathematical representation 
of an objects path. However, the Euler-Lagrange equations are often better suited to extend 
an object’s equations of motion to a set of generalized coordinates. To calculate the Euler- 
Lagrange equations we first define the Lagrangian (L) to be the difference between the kinetic 
and potential energy in the system [3]. The Euler-Lagrange equations are then given by the 
following equation:

To provide some intuition for the use of the Lagrange formalism, we shall briefly discuss the 
single pendulum. We begin by considering the position and velocity of mass m1. We denote 
this position  

where each qi represents generalized coordinate i.
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Figure 2: A Single Pendulum

Using the position and velocities above we can define the kinetic energy (T) and potential
energy (U). Recall that the Lagrangian (L) is taken to be the difference in KE and PE in a
given system.

T =
1

2
m1�̇r

2
=

1

2
m1l

2
1θ̇1

2
(4)

U = −gm1l1 cos θ1 (5)

L = T − U =
1

2
m1l

2
1θ̇1

2
+ gm1l1 cos θ1 (6)

We consider q1 = θ1 as the generalized coordinate of this system. Using the Lagrangian
(6), we compute the equations governing the motion of the pendulum as follows:

∂L

∂θ̇1
= m1l

2
1θ̇1 (7)

∂2L

∂t∂θ̇1
= m1l

2
1θ̈1 (8)

∂L

∂θ1
= −gm1l1 sin θ1 (9)

By substituting into equation (1) and dividing by m1 and l1, we obtain the equation
governing the pendulums course of motion.

l1θ̈1 = −g sin θ1 (10)

This brief exercise should demonstrate the elegance of the Lagrange formalism. In the
following sections we discuss how this formalism was used to construct the chain’s equations
of motion.

2.3 Motivation for the Model

Our chain model is an extension of the double pendulum (Figure 3) to the case of N links.
We briefly illustrate the derivation of the double pendulum’s equations of motion.
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We consider q1 = θ1 as the generalized coordinate of this system. Using the Lagrangian 
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We consider equations (14) and (15) to be the equations of motion for a double pendulum.
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N-pendulum. We use this idea to create a chain of N links. To obtain our chain model, we
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2.4 Description of the Model

As discussed in the prior section, our chain is an extension of the double pendulum. The
chain shall be composed of N massless rigid links of length li, and N+1 beaded masses of
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We can obtain the Lagrangian by computing the difference in KE and PE in the system.

We consider q1 = θ1 and q 2 = θ2 to be our generalized coordinates. We can then use (1)
to obtain the following two equations:

for i = 1,2,...,N.

We consider equations (14) and (15) to be the equations of motion for a double 
pendulum. It is not hard to imagine that one may attempt extending the pendulum to the 
case of an N-pendulum. We use this idea to create a chain of N links. To obtain our chain 
model, we need only detach the N-pendulum, adding an extra mass to the top.

Detecting and handling collisions proved to be the most interesting aspect of this model’s 
development. We believe that our failed first attempt at modeling the collisions provides the 
most intriguing illustration of the difficulties associated with this problem.

As discussed in the prior section, our chain is an extension of the double pendulum. The chain 
shall be composed of N massless rigid links of length li, and N+1 beaded masses of mass mi. 
The chain is defined recursively, with each mass’ position, velocity, and acceleration dependent 
on those prior to it. Beaded mass mi is connected to beaded mass mi+1 by a rigid rod of length 
li. Beneath mass mi+1 is positively oriented angle θi+1. Thus, we can recursively define our 
chain with N angles as follows:
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We consider equations (14) and (15) to be the equations of motion for a double pendulum.
It is not hard to imagine that one may attempt extending the pendulum to the case of an
N-pendulum. We use this idea to create a chain of N links. To obtain our chain model, we
need only detach the N-pendulum, adding an extra mass to the top.

2.4 Description of the Model

As discussed in the prior section, our chain is an extension of the double pendulum. The
chain shall be composed of N massless rigid links of length li, and N+1 beaded masses of
massmi. The chain is defined recursively, with each mass’ position, velocity, and acceleration
dependent on those prior to it. Beaded mass mi is connected to beaded mass mi+1 by a
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Positions Velocities

�r1 = (x1, y1) ṙ1 = (ẋ1, ẏ1)

�ri+1 = �ri + li(sin(θi),− cos(θi))) ṙi+1 = �̇ri + liθ̇i(cos(θi), sin(θi))

4

(11)

(12)
(13)

(14)

(15)
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Our first attempt at handling the collisions began with an intuitive approach. If a beaded 
mass, mi, collides with a barrier, we reverse this mass’ velocity component wise. This is the 
intuitive approach associated with modeling a bouncing ball’s collisions with a wall. The 
idea to implement this approach stemmed from our view of the chain as N+1 bouncing balls 
attached by N rigid rods.

Much to our surprise, this method failed. The issue seemed resolvable at first, due to 
the correct behavior of mass mN+1. However, for any mass m1 −mN, collisions resulted in an 
immediate simulation crash. The issue with this intuitive approach lies in the recursive nature 
of the chain’s equations. We see that each mass’ velocity is dependent on the prior mass’ 
velocity. In turn, the j th mass is dependent upon masses’ m1 − mj -1 velocities. In order to 
implement such a method, each time a collision is detected, we must exit our numerical solver, 
then restart the simulation with the algebraically adjusted velocities.

The equations of motion shall be derived using the Lagrangian formalism, similar to what is done 
in [4]. We take T to be total kinetic energy in the system, and U to be the potential energy.

Manually detecting collisions quickly became both tedious and computationally 
expensive. In order to improve upon our simulation complexity, we sought a method that 
would automatically detect and handle collisions simultaneously. To combine these two tasks, 
we implemented collision detection zones. The detection zones are portions of the coordinate 
plane in which a collision must occur. We now need only use the masses’ coordinates to 
determine if a mass is within a detection zone. If a mass is found to be within the detection 
zone, we note that a collision has occurred during the given iteration.

To handle the collisions, we incorporate the use of “anti-gravity” in each detection zone. 
This method of “anti-gravity” forces the chain to reverse its velocity upon entering a detection 
zone. When a mass enters a detection zone, standard gravity is replaced by a large constant 
(k), with the sign(k) = sign(vyj). We note that the same method is used to handle collisions 
with vertical barriers, we instead determine the sign of the constant from sign(vyj).

Our new method allows for a significantly less complex simulation. We no longer require any 
breaks in our simulation and are able to automatically detect collisions. The result requires only a 
small alteration of our original equations of motion, as described in the Equations of Motion section. 
This alteration accounts for a change in potential energy within each detection zone. By augmenting 
the potential energy, we do not need to account for the chain’s recursive velocity dependence.

2.5.1 Manual Detection

2.5.2 Detection Zones

2.6 Equations of Motion
2.6 Equations of Motion

The equations of motion shall be derived using the Lagrangian formalism, similar to what
is done in [4]. We take T to be total kinetic energy in the system, and U to be the potential
energy.

T =
1

2

N+1∑
i=1

miṙ
2
i (16)

U =
N+1∑
i=1

(ciyi + dixi) +
N−1∑
i=1

Ri(θi+1 − θi)
2 (17)

The Lagrangian is then given by,

L = T − U.

The equations of motion are then given by the Euler-Lagrange equations, computed as fol-
lows:

∂

∂t

∂L

∂q̇i
− ∂L

∂qi
= 0 (18)

where we take q1 = x1, q2 = y1, and qi+2 = θi for i = 1,2,...,N.
We obtain the following three equations:

ẍ1m̄0 +
N∑
i

liθ̈im̄i cos θi =
N∑
i=1

liθ̇i
2
m̄i sin θi − d̄0 (19)

ÿ1m̄0 +
N∑
i

liθ̈im̄i sin θi = −
N∑
i=1

liθ̇i
2
m̄i cos θi − c̄0 (20)

ẍ1m̄i cos θi + ÿ1m̄i sin θi +
∑
j<i

lj θ̈im̄i cos (θj − θi) + θ̈ilim̄i +
N∑
j>i

θ̈jljm̄j cos (θj − θi) (21)

=
∑
j<i

lj θ̇
2
j m̄i sin (θj − θi)−

N∑
j>i

lj θ̇
2
j m̄j sin (θi − θj)− c̄i sin θi − d̄i cos θi + R̄i

The constants defined are given by:

c̄i =
N+1∑
j=i+1

cj, d̄i =
N+1∑
j=i+1

dj, m̄i =
N+1∑
j=i+1

mj

The terms R̄i control the angular restrictions between each link. For each Ri > 0, an
bending stiffness is introduced between the links li and li+1.

R̄i =




2R1(θ1 − θ2) for i = 1

−2Ri−1(θi−1 − θi) + 2Ri(θi − θi+1) for 1 < i < N − 1

−2RN−1(θN−1 − θN) for i = N − 1
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(16)

(17)

The Lagrangian is then given by,rigid rods.
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The equations of motion shall be derived using the Lagrangian formalism, similar to what is done
in [4]. We take T to be total kinetic energy in the system, and U to be the potential energy.

The constants defined are given by:

The terms R ̄i control the angular restrictions between each link. For each Ri > 0, an 
bending stiffness is introduced between the links li and li+1.

where we take q1 = x1, q2 = y1, and qi+2 = θi for i = 1,2,...,N.

We introduce linear viscous damping in the angles by the equivalence of virtual work drawn from 
Schagerl et al [4]. These terms are accounted for by the adding term Qi to the right hand side of 
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ẍ1m̄i cos θi + ÿ1m̄i sin θi +
∑
j<i

lj θ̈im̄i cos (θj − θi) + θ̈ilim̄i +
N∑
j>i

θ̈jljm̄j cos (θj − θi) (21)

=
∑
j<i

lj θ̇
2
j m̄i sin (θj − θi)−

N∑
j>i

lj θ̇
2
j m̄j sin (θi − θj)− c̄i sin θi − d̄i cos θi + R̄i

The constants defined are given by:

c̄i =
N+1∑
j=i+1

cj, d̄i =
N+1∑
j=i+1

dj, m̄i =
N+1∑
j=i+1

mj

The terms R̄i control the angular restrictions between each link. For each Ri > 0, an
bending stiffness is introduced between the links li and li+1.

R̄i =




2R1(θ1 − θ2) for i = 1

−2Ri−1(θi−1 − θi) + 2Ri(θi − θi+1) for 1 < i < N − 1

−2RN−1(θN−1 − θN) for i = N − 1

6

2.6 Equations of Motion

The equations of motion shall be derived using the Lagrangian formalism, similar to what
is done in [4]. We take T to be total kinetic energy in the system, and U to be the potential
energy.

T =
1

2

N+1∑
i=1

miṙ
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We introduce linear viscous damping in the angles by the equivalence of virtual work
drawn from Schagerl et al [4]. These terms are accounted for by the adding term Qi to the
right hand side of each equation of generalized coordinates θi.

Qi =




2θ̇1 − θ̇2 for i = 1

−θ̇i−1 + 2θ̇i − θ̇i+1 for 1 < i < N

θ̇N − θ̇N−1 for i = N

3 Results and Discussion

Our model is able to capture many physical features including friction, viscous damping,
and bending stiffness. By considering systems with varying imposed physical features, we
are able to inspect the chain’s behavior in several distinct cases.

3.1 Conservative System

We begin by creating a chain simulation with perfectly elastic collisions. We also allow for
free rotation about each mass (i.e. no bending stiffness). We observe no fountain in this
case. We observe that the links within the cup are unable to come to a full rest. The links
are also free to rotate about each mass, thus the chain in this state lacks a moment of inertia.
These coupled issues are what we believe prevents the formation of a chain fountain.

In the following trial, we only allow every fifth link to rotate about every fifth mass. The
purpose of doing so is to help ensure that the chain is capable of exhibiting the “kicking-
motion” described by Biggins and Warner[2]. We still maintain elastic collisions in this
simulation. We again fail to observe any chain fountain in this case. As in the prior
simulation, the links never come to rest at the bottom of the cup. This appears to be a
significant issue.

It appears that the presence of friction in the system is essential to the formation of the
fountain. This result is somewhat counter intuitive, as we are still able to see the chain exert
a “kicking” motion as each link leaves the floor of the cup. We note that it was previously
found, by Biggins and Warner, that a floating chain exhibits no chain fountain [1]. Our
findings add to this previous result, as the floating chain did not account for contact with
the floor of the cup.

Figure 4: Conservative System Simulation
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3. Results and Discussion

3.1 Conservative System

Our model is able to capture many physical features including friction, viscous damping, and 
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In the following trial, we only allow every fifth link to rotate about every fifth mass. 
The purpose of doing so is to help ensure that the chain is capable of exhibiting the “kicking- 
motion” described by Biggins and Warner[2]. We still maintain elastic collisions in this 
simulation. We again fail to observe any chain fountain in this case. As in the prior simulation, 
the links never come to rest at the bottom of the cup. This appears to be a significant issue.

It appears that the presence of friction in the system is essential to the formation of the 
fountain. This result is somewhat counter intuitive, as we are still able to see the chain exert a 
“kicking” motion as each link leaves the floor of the cup. We note that it was previously found, 
by Biggins and Warner, that a floating chain exhibits no chain fountain [1]. Our findings add to 
this previous result, as the floating chain did not account for contact with the floor of the cup.
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simulation. We again fail to observe any chain fountain in this case. As in the prior
simulation, the links never come to rest at the bottom of the cup. This appears to be a
significant issue.

It appears that the presence of friction in the system is essential to the formation of the
fountain. This result is somewhat counter intuitive, as we are still able to see the chain exert
a “kicking” motion as each link leaves the floor of the cup. We note that it was previously
found, by Biggins and Warner, that a floating chain exhibits no chain fountain [1]. Our
findings add to this previous result, as the floating chain did not account for contact with
the floor of the cup.

Figure 4: Conservative System Simulation
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3.2 Non-Conservative Simulations
We now inspect the systems behavior with the inclusion of additional parameters. Lateral and 
vertical friction are implemented within the cup. The addition of friction within the cup allows 
for the chains’ links to settle down. As the chain begins to fall, the connected links begin 
exhibiting this described “kicking motion”. The links that are allowed to rotate do so quite 
chaotically. To help control the chaotic motion of the freely rotating links, we include a viscous 
damping term. The chain now follows a more settled path over the side of the cup.

To our surprise, we still see no profound chain. Previous findings have lead us to believe that 
the height of the chain fountain should be proportional to the distance of the cup from the floor 
[1]. We see the chain is tending towards fountain formation, however the height of the fountain is 
not as expected. The cup is set 300 meters above the ground in simulation, thus we suspect the 
fountain should be much larger.

The beginnings of the fountain formation suggests that we have found a model that can 
experience a chain fountain, thus we suspect the issue lies with our chosen friction and damping 
parameters. A more extensive coverage of damping coefficients should produce our desired result.

3.2 Non-Conservative Simulations

We now inspect the systems behavior with the inclusion of additional parameters. Lateral
and vertical friction are implemented within the cup. The addition of friction within the cup
allows for the chains’ links to settle down. As the chain begins to fall, the connected links
begin exhibiting this described “kicking motion”. The links that are allowed to rotate do so
quite chaotically. To help control the chaotic motion of the freely rotating links, we include
a viscous damping term. The chain now follows a more settled path over the side of the cup.

To our surprise, we still see no profound chain. Previous findings have lead us to believe
that the height of the chain fountain should be proportional to the distance of the cup from
the floor [1]. We see the chain is tending towards fountain formation, however the height of
the fountain is not as expected. The cup is set 300 meters above the ground in simulation,
thus we suspect the fountain should be much larger.

The beginnings of the fountain formation suggests that we have found a model that
can experience a chain fountain, thus we suspect the issue lies with our chosen friction and
damping parameters. A more extensive coverage of damping coefficients should produce our
desired result.

Figure 5: A small fountain forming
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Comparing Numerical And Analytic Approximate Gravitational 
Waveforms

Nousha Afshari and Dr. Geoffrey Lovelace

Abstract

A direct observation of gravitational waves will test Einstein’s theory of general relativity 
under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, 
or LIGO, began searching for gravitational waves in September 2015 with three times the 
sensitivity of initial LIGO. To help Advanced LIGO detect as many gravitational waves as 
possible, a major research effort is underway to accurately predict the expected waves. In this 
poster, I will explore how the gravitational waveform produced by a long binary-black-hole 
inspiral, merger, and ringdown is affected by how fast the larger black hole spins. In particular, 
I will present results from simulations of merging black holes, completed using the Spectral 
Einstein Code (black-holes.org/SpEC.html), including some new, long simulations designed to 
mimic black hole-neutron star mergers. I will present comparisons of the numerical waveforms 
with analytic approximations.
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Low-Energy Electron Scattering From Ethylene: Elastic And Vibrational 
Excitation

Borna A. Hlousek 
Advisor: Dr. Murtadha Khakoo

1. Abstract

3. Experiment

2. Introduction

We have measured normalized differential and integral 
cross sections for elastic and vibrationally inelastic 
scattering of low-energy electrons from ethylene (C2H4) 
over a large range of incident electron energies and 
angles. The Differential cross sections(DCS) were 
measured over a large number of electron incident 
energies (E0) and scattering angles ranging from 0.5 
to 100 eV and 5° to 130°. These measurements are 
found to be sensitive to the role of resonances in the 
scattering dynamics. We also found an unusual feature 
in our 90° data (excitation function) at ≈ 3.5 eV and 
tentatively associated it with the onset of the ã3B1u 
triplet electronic state. In addition, DCSs for the 
vibrational excitation of four composite features in 
ethylene electron energy loss spectrum in the range 
of 0 to 0.8 eV energy loss are also presented. These 
DCSs are taken at incident electron energies of 1.25 
eV to 15 eV and for scattering angles (θ) in the range 
of 0° to 180°. These results are compared to previous 
measurements regarding the behavior of these features 
in the scattering dynamics.

The experimental apparatus is a low energy electron 
spectrometer located in Dan Black Hall which produces 
a collimated, highly mono-energetic electron beam that 
collides with a gas target emitted through a collimated 
aperture. The incident electrons are deflected off the 
gas and detected by a scattered electron detector.

Both the gun and the detector were constructed 
from titanium and employed a set of cylindrical 
transport lenses with a double hemispherical energy 
selectors. The entire apparatus was housed in a 
magnetically shielded high-vacuum chamber.

Electrons were detected by a discrete dynode 
electron multiplier with a background rate of <0.01 
Hz, capable of linearly detecting >105 Hz without 
saturating [1]. The typical electron cur- rents hovered 
in the range of 15–25 nA, with a total system energy 
resolution of between 38 and 50 meV, full width at half 
the maximum. Lower currents were chosen for lower E0 
values to minimize the effect of space charge broadening 
of the incident electron beam. The beam was easily 
focused to 1 eV and extremely stable, with variation 
of less than a maximum of 10% during the days data 
taking. The energy of the beam was regularly checked 
via measuring the dip in the elastic scattering caused by 

The theoretical and experimental electron interactions of 
ethylene or ethene C2H4 have been extensively studied, 
especially with regard to resonant elastic scattering 
and vibrational excitation. The C=C double bond in 
ethylene is a region of high electron density and of great 
interest as it allows for the occurrence of vibrational 
resonances. Ethylene is the most fundamental molecule 
that comprises the C=C double bond and thus the 
simplest to look at resonances associated with this bond. 

Department of Physics, California State University, Fullerton

Low-energy electron collisions with ethylene have also 
been of interest in modeling low-temperature plasmas 
as well as for their role in basic combustion of a 
primary hydrocarbon. Differential cross sections, are 
essentially scattering probabilities for the deflection of 
electron of energy E0 through any scattering angle.
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the 2 2S He resonance at 19.366 eV [2] at θ = 90° during 
an experimental run. The energy loss spectra of the 
elastic peaks were collected at fixed E0 values and by 
repetitive, multichannel scaling techniques.

The gas target was formed by the flow of gas 
through a small 0.3mm aperture, which was carbon 
coated (sooted, acetylene flame) to reduce the 
secondary electron emission off of other components. 
The aperture was attached to a movable source 
arrangement. This is important because when low-
energy electron-scattering rates are to be accurately 
determined, the background scattering can be 
significant (>20%) at small scattering angles. The 
measured DCSs were normalized using the relative flow 
method with helium as the reference gas, using DCSs 
from the well-established work of Nesbet [3] for E0 
below 20 eV and of Register et al. [4] and Boesten and 
Tanaka [5] for E0 above 20 eV. The aperture pressure 
ranged from 1.2 to 2 torr for Helium and 0.12 to 0.25 
torr for ethylene, corresponding to chamber pressures 
in the range of 1.2 106 to 2 106 torr. For each E0 value 
the set of DCS was taken a minimum of two times to 
check the measurements reproducibility. A weighted 
average was made of multiple data sets to obtain the 
final DCSs.

The DCSs are given along with 1 standard 
deviation error bars in Table I. For the vibrational ex- 
citation experiment, electron energy loss spectra on the 
energy-loss range of 0.15 to 0.65 eV were taken at 1.25, 
1.5, 1.75, 2, 3, 4, 5, 8, and 15 eV for the same angles 
as the elastic-scattering data. A sample spectrum is 
given in Fig. 1. These spectra were unfolded using 
the energies of vibrational modes given in Table II 
obtained from NIST [6]. Each spectrum was taken 
multiple times to ensure reproducibility. The DCSs for 
vibrational excitation were obtained by normalizing, to 
the elastic DCS of this work, the intensity ratios of the 
vibrational features to the elastic feature taken in the 
same energy-loss spectrum. In the unfolding algorithm, 
because of our restricted energy resolution of 38–45 
meV, it was necessary to group energy-loss features, to 
obtain reproducible DCSs with reasonable statistics. 
This reduces the detail that could be obtained on the 
excitation of individual vibrations, compared with the 
higher-resolution data of Walker et al. [7] (resolution 22 
meV) and Allan et al. [8] (20 meV).

Figure 1: Background subtracted electron energy-loss spectrum of 
ethylene at E0 = 2eV and θ = 90°. The Black dots are the experimental 
data and the blue line is the fit to the data.

4. Results and Discussion

4.1 Elastic
Our experimental were especially used to determine 
the elastic Integral Cross Section and Multi-Channel 
Schwinger Methods (MTCS). We measured many elastic 
DCSs from E0 values in the region of 1.25 - 2.5 eV; 
where the π∗ 2B2g resonance is located. Figure 2 shows 
the trend of the angular distribution for E0 from 0.5 
to 2.5 eV. At E0 = 0.5 eV the scattering shows basic 
polarization potential scattering, i.e., a forward peak 
merging into a backward peak without any midangle 
structure. At higher energies, we see in Fig. 3(a) that 
the dπ distribution due to π∗ 2B2g resonance sets in 
around E0 = 1 eV and persists until 3 eV. This E0 
range was also observed by [6,7], except that our results 
track it in the elastic scattering channel only whereas 
[8] tracks it in both elastic and vibrational excitation 
channels and [10] only in the vibrational excitation 
channels. The present elastic DCSs at 1.5 and 5 eV 
(Fig. 45) show excellent agreement with Allan et al. 
[8] at both E0 values where they have published their 
DCSs, and they are in good agreement with the results 
of Panajotovic et al. [9] at large θ, but at small θ the 
data of Ref. [9] do not display the forward scattering 
observed in the present work and in Ref. [8] below 5 eV.



196

Figure 2: DCSs for low-energy elastic electron-ethylene scattering. Experiments: The red circle represents present results, the green diamond 
represents Allan et al. [8] digitized from their paper, and the blue triangle Panajotovic et al. [8].

At most scattering angles θ the forward 
scattering is more pronounced in our measurements 
than any theoretical DCS. As our E0 values rise 
above 5 eV, the agreement with theory typically 
improves, with greatest confirmation in the 8-15 eV 
range. At energies greater than 15 eV the neglect of 
ionization and other open channels makes Schwinger 
Multichannel methods less accurate and creates 
disagreements between theory and experiment. 

The effect of the dominant π∗ 2B2g is seen in figure 2 
where the elastic scattering at θ=90° is measured as 
a function of E0. There is also a feature that extends 
from E0 = 3.0 to 5.2 eV, coinciding with the a 3 B1u 
triplet electronic state which extends in the Franck-
Condon region of 3.2 to 5.9 eV as observed by Allan 
et al. [8], and could possibly suggest the decay of a 
near-threshold core-excited resonance into the elastic 
channel.
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4.2 Vibrational
Our vibrational excitation DCSs were taken at E0 
values of 1.25–15 eV and for from 15° to 130°. These 
DCSs were integrated using numerical methods to 
obtain integral cross sections (ICSs). Figure 4 shows 
E0 = 8 eV and 15 eV DCSs for the sum of the first two 
features a,b,c,d in figure 1 and the last feature. The 
error bars range in 20% levels for 5 eV and above 25% 
levels at 8 eV. The distributions are nominally flat, 
showing the major influence of the 2Ag shape resonance 
according to the assignment of [7] in the region around 
E0 = 7.5 eV, which has a width of ≈5 eV as shown in 
figure 3 for the 0.379 eV excitation function. However, 
a molecular orbital calculation using a minimal basis 
set suggests the 7.5 eV peak results from overlapping 
CH σ∗resonances of 2B2u, B1u, and 2Ag symmetries.

A different figure (not included here) also shows 
“excitation functions” for other applicable energy losses 
to compare with [6,7]. These are obtained by fixing the 
energy loss at the given value on the spectrometer and 
monitoring the scattered counts at the fixed θ = 90° as 
a function of E0. These relative counts are normalized 
to our elastic DCSs for features 1–4, respectively, at 
the resonance peak around E0 = 2 eV. Our results 
excluding feature 4 h,i,j,k in figure 1 are higher at E0 
above 3eV than Ref. [10]’s because of our experiments 
broader resolution which includes excitations outside of 
the nominal energy loss for exciting a single vibrational 
mode at the energy-loss setting.

Figure 3: Experimental DCSs for vibrational excitation of ethylene for features at the energy loss specified, at the fixed θ of 90°, as a function of 
energy E0. Red dots represent Present DCS points at θ = 90°, for regions 1, 2, 3, and 4, respectively. Black dots represent Present results normalized 
to the present regional DCSs; Triple dash represents Walker et al. [7] digitized data at θ = 90°; Allan et al. [8] digitized data at θ = 180°.
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We can still observe all modes affected by 
the longer-lived 2B2g and short-lived 7.5 eV shape 
resonances across their E0 ranges. Feature 4 sums 
several C-H stretch modes is far more excited in the 
7.5 eV energy range. In figure 3 the DCSs of the 
four features are displayed. For the first feature, the 
d-wave distribution due to the π∗ 2B2g resonance at 2 
eV does not affect this feature as strongly as it does 

Figure 4: Experimental DCSs for vibrational excitation of features. Legend for E0 values: yellow circle for 1.25, blue triangle for 1.5, red dot for 
1.75, green square for 2.0, green triangle for 3.0,purple diamond for 5.0 eV, black circle for 8.0, and red square for 15 eV.

the others, but it nevertheless excites these modes. 
Feature 2–4 are all enhanced by resonant scattering, 
especially the C=C double bond excitation at low E0 
values.In fact the DCS for feature 3 (the C-C stretch) 
is increased in size by a factor of 2 at E0 = 1.75 eV or 
2 eV when comparing to E0 = 8 eV which is the next 
highest in magnitude. This mode shows a persistent 
d-wave angular distribution even at E0 = 5 eV.
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The present work has presented DCSs for elastic 
scattering from C2H4 over a large range of energies 
from 0.5 to 100 eV. Our results are in very good 
agreement with previously measured DCSs, especially 
those of Allan et al. [8] where agreement is excellent. 
The cross section displays clear for- ward scattering 
at low energies, clarifying the low-energy elastic DCS 
picture for theoretical models to reproduce. Forward 
scattering, and in some cases backward scattering, in 
the elastic channel at low energies is not completely 
accounted for by theory, possibly indicating the need 
for larger calculations that better address polarization 
and/or long-range (or equivalently high partial-wave) 
scattering. An interesting feature in our 90° scattering 
elastic excitation function coincides in energy with the 
excitation energy of the a 3 B1u triplet electronic state 
which extends in the excitation Franck-Condon region 
of 3.2–5.9 eV as observed by Allan et al. [8], and we 
tentatively assign this to a threshold coupling between 
elastic and electronic excitation channels. Further, 
independent, work to confirm this assignment would be 
desirable. Our lower-resolution vibrational excitation 
DCSs also provide angular distributions and magnitudes 
for groups of vibrational excitations that point to 
enhancement via C-C π∗ ( 2B2g) and C-H σ∗ (2B2u, 2B1u, 
and 2Ag) shape resonances, showing regions of dπ and 
sσ angular distributions, respectively, and complement 
the work of Walker et al. [7] and Allan et al. [8]. 
However, theoretical work on the vibrational excitation 
of the C-H and C=C modes of ethylene is needed to 
fully understand the observed resonant behavior.
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Modeling Binary Neutron Stars

As two neutron stars orbit each other there will be 
orbital decay due to gravitational radiation. This 
gravitational radiation, or gravitational waves, 
stretches and squeezes the space- time as it travels and 
is predicted to modify the space-time on Earth.

Laser Interferometer Gravitational wave 
Observatory (LIGO) has been designed to catch these 
gravitational signals that are predicted. For LIGO to 
most accurately extract gravitational wave signals from 
all the possible fluctuations in the detector, we need to 

Conner Park
Advisor: Dr. Jocelyn Read

1. Background

Neutron Stars

2. Methods

Gravitational Waves

Different Post-Newtonian Models

When a star dies the remnants create a black hole, 
white dwarf, or neutron star. A black hole is a 
celestial body where all of the matter has collapsed 
into a singularity. A neutron star is a “cold” star with 
a gravitational force strong enough that quantum 
pressure of degenerate neutrons is needed to keep it 
stable. The focus of the paper will be on two neutron 
stars orbiting each other.

A neutron star has greater mass than the sun in 
our solar system but is smaller in radius. The Equation 
Of State (EOS) of the star tells us the relationship 
between physical properties e.g. density and pressure. 
Depending on the EOS of the neutron star the radius 
of the celestial body will be approximately 10 to 13 
km. This becomes important in determining how 
deformed a star becomes due to tidal effects. An EOS 
with a smaller radius will have smaller deformations 
whereas an EOS with a larger radius will have larger 
deformations. This research focuses on the different 
EOSs and how they affect the gravitational waves 
emitted binary neutron star systems.

There are many different ways to mathematical 
represent two masses orbiting each other. These are 
not to be confused with Newtonian models because the 
PN models will take into account Einstein’s theory of 
General Relativity.

The first PN model examined in this paper is the 
Taylor T4. Taylor T4 will have parameters containing 
the masses of the two neutron stars and a post 
Newtonian expansion parameter, x. This representation 
models the inspiral of two point masses. Modeling the 
binary system in the aforementioned way we get an 
ordinary differential equation that we can be solved 
without the use of a supercomputer. I will refer to this 
model as Point Particles because that is assumption we 
are using for the first model. 

The second PN model will take Point Particle 
and add a correction factor. This correction factor 
will contain information about the tides (Λ) and 
resonances of the neutron stars. The model will 
then be parameterized by additional factors but the 
equation will still be an ordinary differential equation. 
Most tidal models in the literature assume that the 
system has gravitational wave frequency well below 
the resonance frequency (f -> infinity is assumed in 
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create an accurate prediction. To create a prediction, 
we need to consider all the factors that can contribute 
to gravitational waves. The focus of this research will 
be on the effects of Tides and Resonance Frequencies on 
the gravitational waves emitted from the coalescence of 
binary neutron stars.
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Using Eric Flynn’s hybrid matching code2 the 3 
Post-Newtonian models were matched with the data 
from our Japanese collaborators. The hybrid code reads 
in PN waveform and a numerical waveform to find 
the best match. The scipy function, correlate, slides 
the numerical waveform onto the PN until a match is 
found. It should be noted that the numerical waveform 
is truncated to exclude the sporadic beginning and any 
parts after merger. In previous work, the numerical 
waveform matched onto the PN waveform before the 

Numerical Matching

Calculating Errors

our equations). In our implementation we don’t take 
that limit, but for comparison we reproduce that 
assumption by setting the resonance frequencies to 
large values. Doing this I will get a result that is only 
affected by the Post-Newtonian piece and the tides; I 
will call this model Particles with Tides.

The third model will take the second model and 
include estimates of the actual fundamental mode 
frequency of the neutron star predicted by Chan et al. 
[Phys.Rev.D90, 124023 (2014)]. This model requires 
the same information as the second model but has 
a predicted frequency instead of an arbitrarily large 
value; therefore this representation is still an ordinary 
differential equation. I will refer to this model as 
Particles with Tides and Resonances since it requires 
tides and a calculated resonance frequency.

After creating the three different models a code to 
solve the ordinary differential equation will be created. 
I will use a starting frequency of and a starting phase 
angle of 0 radians. Then all of this information will 
be put into the numpy function, odeint, to solve and 
output an array of data. The data points will then be 
put into Veronica Lockett-Ruiz’s truncate function1 
which will read in all the data points and keep the 
frequencies that are below a certain threshold. This 
is to ensure that the models end at a fixed point 
that is within the limits of the differential equation 
solver. Then to change the orbital waveform data 
into gravitational waveform data, the orbital data is 
multiplied by a factor of e2iφ . After the data has been 
modified appropriately another function from Lockett-
Ruiz’s code, export1, will be used to create an excel 
spreadsheet with all of the information about the 
gravitational waveforms.

predicted merger, which innately caused some error. To 
account for the end of the numerical wave not matching 
the end of the PN, all of the values after the merger for 
both the waves are replaced with zeros.

To test the accuracy of the Post-Newtonian models, I 
will use two methods: one is the quantified match and 
the second is the root mean square of the phase.

The first method is an extension of the hybrid 
code that I will use to match the PN and the 
numerical. The hybrid code determines the match of 
the numerical region on the PN and I will take the 
quantified match value and then normalize it. To 
normalize the match value I will take the match value 
and then dividing by the PN match with itself and the 
numerical match with itself.

The second method is to use the numpy function 
unwrap to obtain the phase angles and compute a 
root mean square. This requires the waveforms to be 
in its complex form and then an inverse tangent will 
be computed to get the phase. The unwrap function 
automatically keeps adding the phase angles so that 
the result is a one-to-one function. We then match the 
values accordingly and do a root mean square, and it 
should be noted that the concatenation of zeros also 
affects the RMS values so that we expect a trend much 
like that of the first method.

Calculating Errors 

 To test the accuracy of the Post-Newtonian models, I will use two methods: one is the 
quantified match and the second is the root mean square of the phase.  

 The first method is an extension of the hybrid code that I will use to match the PN and 
the numerical. The hybrid code determines the match of the numerical region on the PN and I 
will take the quantified match value and then normalize it. To normalize the match value I will 
take the match value and then dividing by the PN match with itself and the numerical match with 
itself.  

            
     ∫      

              
     ∫      

                   ∫       
              

 

 The second method is to use the numpy function unwrap to obtain the phase angles and 
compute a root mean square. This requires the waveforms to be in its complex form and then an 
inverse tangent will be computed to get the phase. The unwrap function automatically keeps 
adding the phase angles so that the result is a one-to-one function. We then match the values 
accordingly and do a root mean square, and it should be noted that the concatenation of zeros 
also affects the RMS values so that we expect a trend much like that of the first method.  

Results 

Hybrid Error and RMS Error 

 There were a total of 99 Post-Newtonian waveforms, 3 different methods, and 33 
different Numerical waveforms. An example with the best match is shown below: 

 

Point Particles 
EOS: APR4 
Mass 1: 1.30  
Mass 2: 1.50 
Λ 1: 392.303 
Λ 2: 158.003 
f01: 2705.83 hz 
f02: 2739.178 hz 
match 
value: .8596586 

Calculating Errors 

 To test the accuracy of the Post-Newtonian models, I will use two methods: one is the 
quantified match and the second is the root mean square of the phase.  

 The first method is an extension of the hybrid code that I will use to match the PN and 
the numerical. The hybrid code determines the match of the numerical region on the PN and I 
will take the quantified match value and then normalize it. To normalize the match value I will 
take the match value and then dividing by the PN match with itself and the numerical match with 
itself.  

            
     ∫      

              
     ∫      

                   ∫       
              

 

 The second method is to use the numpy function unwrap to obtain the phase angles and 
compute a root mean square. This requires the waveforms to be in its complex form and then an 
inverse tangent will be computed to get the phase. The unwrap function automatically keeps 
adding the phase angles so that the result is a one-to-one function. We then match the values 
accordingly and do a root mean square, and it should be noted that the concatenation of zeros 
also affects the RMS values so that we expect a trend much like that of the first method.  

Results 

Hybrid Error and RMS Error 

 There were a total of 99 Post-Newtonian waveforms, 3 different methods, and 33 
different Numerical waveforms. An example with the best match is shown below: 

 

Point Particles 
EOS: APR4 
Mass 1: 1.30  
Mass 2: 1.50 
Λ 1: 392.303 
Λ 2: 158.003 
f01: 2705.83 hz 
f02: 2739.178 hz 
match 
value: .8596586 
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3. Results

Hybrid Error and RMS Error
There were a total of 99 Post-Newtonian waveforms, 3 
different methods, and 33 different Numerical waveforms. 
An example with the best match is shown below:

The match above represents the matching done 
with Eric’s code. The code matches the two waveforms 
for a certain region of the numerical, which is shown 
in the graphs. The outside of the graphs that are not 
shown are either the buildup of the PN or zero.

This graph represents the phase angles associated 
with the above hybrid match.

Point Particles 
EOS: APR4 
Mass 1: 1.30 
Mass 2: 1.50

Point Particles 
EOS: APR4 
Mass 1: 1.30 
Mass 2: 1.50

Point Particles 
EOS: APR4 
Mass 1: 1.30 
Mass 2: 1.50

Point Particles 
EOS: APR4 
Mass 1: 1.30 
Mass 2: 1.50

Λ 1: 392.303
Λ 2: 158.003 
f01: 2705.83 hz 
f02: 2739.178 hz 
match value: .8596586

Λ 1: 392.303
Λ 2: 158.003 
f01: 2705.83 hz 
f02: 2739.178 hz 
match value: .8596586

Λ 1: 392.303
Λ 2: 158.003 
f01: 2705.83 hz 
f02: 2739.178 hz 
match value: .8596586

Λ 1: 392.303
Λ 2: 158.003 
f01: 2705.83 hz 
f02: 2739.178 hz 
match value: .8596586
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Collection of Errors Interpretation of Data

Point Particles 
EOS: APR4 
Mass 1: 1.30 
Mass 2: 1.50

Point Particles 
EOS: APR4 
Mass 1: 1.30 
Mass 2: 1.50

A combined lambda is created using a combined 
tidal parameter term derived by Wade et al. [Phys. 
Rev. D 89, 103012 (2014)]. This method takes the two 
Λ parameters and creates a new lambda that can be 
thought of as an average lambda of the system. 

Λ 1: 392.303
Λ 2: 158.003 
f01: 2705.83 hz 
f02: 2739.178 hz 
match value: .8596586

Λ 1: 392.303
Λ 2: 158.003 
f01: 2705.83 hz 
f02: 2739.178 hz 
match value: .8596586

 

This graph represents the phase angles associated with the above hybrid match.  

 

Collection of Errors 

A combined lambda is created using a combined tidal parameter term derived by Wade et 
al. [Phys. Rev. D 89, 103012 (2014)]. This method takes the two Λ parameters and creates a new 
lambda that can be thought of as an average lambda of the system. 

      [                   √                      ] 

where              
               

Using this new parameter    we plot the two errors against the new lambda: 

 

 

 

 

 

 

 

Tidal Resonance 
EOS: APR4 
Mass 1: 1.30  
Mass 2: 1.50 
Λ 1: 392.303 
Λ 2: 158.003 
f01: 2705.83 hz 
f02: 2739.178 hz 
RMS 
value: .8650380 

Using this new parameter η we plot the two errors against 
the new lambda:

The first thing that is brought to my attention with 
these graphs is the width of the Particles with Tides and 
Resonance model and the Point Particles model. The 
graphs show that for every numerical match the Particles 
with Tides and Resonance was a better fit. An example 
is shown below with Point Particles, Particles with Tides, 
and Particles with Tides and Resonance respectively. I 
used the worst hybrid match as an example to be able to 
see the difference because it is more apparent.
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From here there are a few ways to change the 
Particles with Tides and Resonance model to have 
a frequency cutoff that matches the numerical wave. 
First is to analytically derive a representation of 
the quadruple moment during the last orbits of the 
system. Second is to use a fit that matches the cutoff 
frequency mathematically and maybe has a useful 
physical interpretation. Third is to use the frequency 
at the merger for the numerical as the resonance 
frequency for the PN models. Lastly, work comparing 
the effectiveness of these three models is required to 
determine the best model to use.

This work used a particular Post-Newtonian model. 
To verify results, we should compare the effect in 
other Post-Newtonian-based models, like the Effective 
One Body (EOB) model. We can then determine how 
different PN models behave at higher frequencies where 
resonance affects the inspiral of the neutron stars.

The graphs of the match show that each PN 
model ends at different times and the Particles with 
Tides and Resonance with the best match ends closest 
to the end of the Numerical data. Also the width 
between the two data points grows as a function of 
lambda. The Particles with Tides and Resonance model 
increases in fit, compared to the Point Particles model, 
as lambda increases.

Cutoff of Frequency

Different Models

Point Particles 
EOS: APR4 
Mass 1: 1.30 
Mass 2: 1.50

Λ 1: 392.303
Λ 2: 158.003 
f01: 2705.83 hz 
f02: 2739.178 hz 
match value: .8596586

The data still show that the matches tend to get 
worse as lambda increase. That seems to suggest that 
although the Particles with Tides and Resonance is 
a better match than Point Particles or Particles with 
Tides, it is still not sufficient to match the numerical 
data at higher lambdas
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An Analysis of Defense Innovation Unit Experimental in Silicon Valley 
Tech Innovation

Phillipe Diego Rodriguez
Advisor: Mr. John Bradley Jackson

Abstract

On July 2, 2015, Defense Innovation Unit Experimental (DIUx) was created by the Department 
of Defense (DoD) as part of the Defense Innovation Initiative efforts to acquire new 
technological innovations in Silicon Valley. Although the Department of Defense already works 
with major industry contractors, DIUx provides a new source for technological innovations and 
entrepreneurial business processes that may ultimately serve to improve the national security of 
the United States of America. However, many startups avoid contact with the government by 
serving as subcontractors to existing organizations. DIUx has plans to bolster relationships with 
entrepreneurs and startups to obtain breakthrough technological capabilities despite a history 
of the decline of governmental contracts because of their bureaucratic nature. Improvements 
ranging from the better sharing of acquisition information to implementing easier sales processes 
are necessary for acquiring Silicon Valley technologies. While many barriers to Silicon Valley 
defense acquisition exist, this analysis aims to address the concerns of Silicon Valley tech firms 
by providing recommendations to DIUx and the DoD in order to improve their chances for 
acquiring breakthrough technologies that may prove essential in the national security efforts of 
the United States of America.

Department of Physics, California State University, Fullerton
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Student Understanding of Non-Cartesian Coordinate Systems in
Upper-division Physics*

Marlene Vega
Advisor: Dr. Michael Loverude

Abstract

Acknowledgements: 

Understanding of Electricity & Magnetism in the upper division requires a considerable amount 
of integration of mathematical concepts with abstract physics concepts. So the ability to 
incorporate the use of vectors in several different coordinate systems is an essential skill in an 
E&M course. This study aims to understand how students think about coordinate systems and 
vectors in non-Cartesian coordinate systems (plane polar and spherical). Data were collected in 
a math methods course for physics majors over several semesters, using free response written 
questions posed on ungraded quizzes and graded course assessments given after instruction.  
Student responses were coded and assigned to categories. Based on the analysis of the written 
responses it was not clear to determine whether if student were obtaining corrects responses 
because they had correct reasoning, or if they had correct reasoning and just happened to 
answer incorrectly. Because of this, the written questions were revised in a way that would limit 
this ambiguity. The revised questions were then given to a couple of students in an interview 
type setting. Overall, students appear to be overgeneralizing from Cartesian coordinate systems 
in ways that are not productive and appear to have difficulty understanding what unit vectors 
are and what they represent. 

I would like to thank Michael Loverude and Warren Christensen for helping me and guiding me 
throughout this research experience, and Gina Passante and Brian Forlow for contributing to 
our research as well.

*Supported in part by NSF DRL #1156974

Department of Physics, California State University, Fullerton
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Ecology Lab, and is apart of the Urban Agriculture Community-based Research Experience (U-ACRE).  
His research focuses on sustainable food production practices that incorporate agriculture ecology, and 
was conducted at the Saint Andrews Seeds of Hope Community Garden.  He will be applying to the 
Peace Corps. upon graduation where he can utilize his education to give back to the less fortunate.
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Anthony A Macias is a senior pursuing a Bachelor of Science in Geology with a concentration in Sed-
imentary Geochemistry. He works with Dr. Adam Woods in the Inductively Coupled Plasma (ICP) 
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Dr. Kristy L. Forsgren’s reproductive physiology lab. Evelyn is interested in researching the reproductive 
morphology of male and female black perch, Embiotoca jacksoni. She will be applying to the CSUF Mas-
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Advancement of Chicanos and Native Americans in Science (SACNAS) conference in Washington D.C. 
After graduation, she intends to pursue a graduate degree where she can explore her interests in evolu-
tionary ecology, fisheries biology, and conservation of marine biodiversity. 
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years. She is set to graduate in the summer after attending field camp in Montana. Post-graduation, she 
hopes to make a career with a geotechnical company either local or out of state.

Sophia Shimamura (Cover Designer)

Sophia Shimamura is a graphic design student from Anaheim, California. She is a senior at California 
State University, Fullerton and plans to graduate in the spring of 2017. She is a 2015 Jerry Samuelson 
Scholarship winner for her leadership and commitment to the College of the Arts. Aside from art and 
design Sophia spends her free time volunteering at the OC Zoo. Her job there is to educate people about 
animals, bring out live animals for the public, and lead tours. 
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Salim Soubra

Salim Soubra has pursued his Bachelor of Science Degree in Chemistry. He worked in Dr. Scott Hewitt’s 
lab performing studies on the kinetics, reaction mechanisms, and spectroscopy of atmospheric species us-
ing gas chromatography. The research was preliminary results to demonstrate the computational results 
for Dr. Fu-Ming Tao’s calculations. Salim has recently started working as a Laboratory Technologist with 
NAMSA, a Medical Research Organization. He work in the Analytical Services department, performing 
USP Monograph testing on medical devices, ensuring that they are sterile before put on the market.  

Christine Tong

Rebecca Steever

Christine Tong has recently graduated from CSUF this Fall 2015 with a Bachelor of Science in Geo-
logical Sciences.  She worked with Dr. Nicole Bonuso, exploring the recovery of the Permian to Middle 
Triassic Extinction in the northern Nevada region in Favert Canyon. Her goal
is to work in an environmental or energy company.

Rebecca Steever is graduating Summer 2016 with a B.S. in Geological Sciences. Her undergraduate 
research was completed under the guidance of Dr. Diane Clemens-Knott and focused on igneous rock 
relationships in the Southern Sierra Nevada. She hopes to transition into environmental geology after 
graduation.

Emily Silveira

Emily Silveira is currently working towards a Master's of Science in Geology, specializing in paleocli-
matology. She works as a Teaching Associate in the Geological Sciences department and leads Physical 
Geology lab classes. Following completion of her degree, Emily will be pursuing a career in Earth 
Science education.
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Adam Walder

Adam is a senior finishing his last semester at CSUF.  He is an Applied Mathematics Major with a minor 
in Computer Science. His projects have involved mathematical modeling, statistical simulation, and 
scientific computing. In the summer of 2015, Adam was selected to participate in MBI’s summer REU at 
Virginia Tech. He will be attending graduate school pursuing a Ph.D. in Statistics this coming Fall. 

Ignacio Vera

Ignacio Vera is a Biology major with a concentration in Ecology and Evolutionary Biology expecting 
to graduate in spring 2016.  Ignacio has been a Southern California Ecosystems Research Program 
(SCERP) Scholar since the summer of 2012.  Heavily interested in conservation biology he chose to 
work with Dr. Sandquist on the federally endangered plant Eriastrum densifolium ssp. sanctorum.  
SCERP has further developed his skills not only as a scientist, but as a public speaker with numerous 
oral and poster presentations culminating in a Best Poster Award at the Botanical Society of Ameri-
ca’s 2014 Botany Conference in Boise, ID.

Marlene Vega

Marlene Vega is an undergraduate senior majoring in physics.  At the moment, she conducts research with 
Dr. Michael Loverude by observing how students understand and think about vectors and coordinate sys-
tems in higher division physics courses. In addition, she also conducts research with Dr. Leigh Hargreaves 
by simulating the design of the electron spectrometer under the software program SIMION. Aside from 
research, she works as a supplemental instructional leader for the physics department. Upon graduation, 
she plans to attend the physics master’s program at California State University, Fullerton. She is exploring 
her options in her physics career, but is certain she wants a career that can make a difference.

Daniel Weiherer

Daniel Weiherer is perusing a B.S. in Biological Science with a concentration in Ecology and Evolution-
ary Biology. He has a strong interest in Ecology and Botany. Daniel has received three years of experi-
ence preparing, curating, and researching fossils at The Cooper Center by participation in internships, 
volunteering, and working to reconstruct the Eocene paleoenvironment of Orange County. He also is 
conducting research on the seed germination of the Santa Ana river woolly star in a physiological plant 
ecology lab. Additionally, Daniel went to Thailand last summer through the SMRT program to research 
medicinal plants used by Buddhist monks. Daniel will continue on to obtain a graduate education in 
Biology. Ultimately, through his passion for the outdoors, Daniel wants to conduct biological research in 
the field. 


