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Marks of a CSUF graduate from the College of Natural Sciences and Mathematics

GRADUATES FROM THE COLLEGE OF NATURAL SCIENCES AND MATHEMATICS:

•	 Understand the basic concepts and principles of science and mathematics.

•	 Are experienced in working collectively and collaborating to solve problems.

•	 Communicate both orally and in writing with clarity, precision, and confidence.

•	 Are adept at using computers to do word processing, prepare spreadsheets and graphs, and 
use presentation software.

•	 Possess skills in information retrieval using library resources and the internet.

•	 Have extensive laboratory, workshop, and field experience where they utilize the scientific 
method to ask questions, formulate hypotheses, design and conduct experiments, and analyze 
data.

•	 Appreciate diverse cultures as a result of working side by side with many people in 
collaborative efforts in the classroom, laboratory, and on research projects.

•	 Have had the opportunity to work individually with faculty members in conducting research 
and independent projects, often leading to the generation of original data and contributing to 
the research knowledge base.

•	 Are capable of working with modern equipment, instrumentation, and techniques.
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DIMENSIONS

DIMENSIONS: The Journal of Undergraduate Research in Natural Sciences and Mathematics 
is an official publication of California State University, Fullerton. DIMENSIONS is published 
annually by CSUF, 800 N. State College Blvd., Fullerton, CA 92834. Copyright ©2021 CSUF. 
Except as otherwise provided, DIMENSIONS grants permission for material in this publication 
to be copied for use by non-profit educational institutions for scholarly or instructional purposes 
only, provided that 1) copies are distributed at or below cost, 2) the author and DIMENSIONS 
are identified, and 3) proper notice of copyright appears on each copy. If the author retains the 
copyright, permission to copy must be obtained directly from the author.

About the Cover
Mathematics and art have long been intertwined: The ancient Greeks believed that “perfect” 
mathematical proportions governed what was aesthetically pleasing, and this belief carried over 
to the Renaissance where artists used precise mathematical measurements to replicate the natural 
world in man-made creations. This was possible because math and nature are also inherently 
related: every complex structure and elaborate pattern in nature can usually be broken down into 
a series of equations and theorems. I sought to illustrate that triangular relation between math, 
art, and nature in this cover, by highlighting the persistence of the Golden Ratio/Golden Spiral, 
a mathematical understanding of proportions based on the Fibonacci sequence, in the natural 
geometry of objects studied in various fields. From the swirl of the celestial bodies in a galaxy to 
the spiral structures formed by complex molecular interactions, all the sciences have a beauty 
and art to them in isolation, but nothing truly exists in a vacuum, and the marvels of each field of 
study are further amplified when we celebrate the way all of STEM is simultaneously diverse and 
wonderfully interconnected.
The cover itself is designed to look like traditional 16th/17th century scientific illustration, which 
originally accompanied naturalist findings and were used to convey exciting and remarkable 
research, much like the manuscripts and abstracts that fill these pages.

Special Thanks
Thank you to the CNSM administrative staff for their support, the faculty for advising students 
and providing them with valuable research opportunities, and Tatiana Pedroza and Anais Perez 
for their guidance and oversight.
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Dear Titan NSMers,

Even in a pandemic, the college and our students still pursued research, 
designed experiments, collected data, wrote draft upon draft, and ultimately 
published their findings to share with other mathematicians and scientists. 
We could not be prouder of the effort that these pages represent, both for 
the students themselves and for the faculty mentors who stand behind 
these students and enable this work. On behalf of all of us here in NSM, 
please enjoy this issue of Dimensions as we celebrate the discovery of new 
knowledge and the original research of our students.

 

Marie Johnson
Dean, College of Natural Sciences and Mathematics
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Diet of Coyotes in Rural Agricultural Areas of California: A Comparative 
Analysis of Stable Isotope and Stomach Contents Analysis

Jesi Nonora
Advisor: Paul Stapp, Ph.D. 
California State University, Fullerton
Department of Biological Science

ABSTRACT

Coyotes (Canis latrans) are opportunistic, generalist 
predators that, due to their flexible diet and tolerance 
of people, occupy a wide range of natural and human-
modified ecosystems in California. As a result of their 
omnivorous habits, the trophic position of coyotes in 
food webs is highly variable depending on habitat type, 
the availability of wild vs. anthropogenic prey, and the 
degree of urbanization or agricultural development. 
Traditional methods of diet analysis such as stomach or 
scat content analysis (SCA) provide a snapshot of coyote 
diet over time but can provide precise information 

on the species and numbers of prey individuals eaten 
if there are undigested, identifiable remains present. 
Stable carbon and nitrogen isotope analysis (SIA) 
provides an integrated measure of assimilated foods 
over longer time periods, depending on the type of 
tissue analyzed, although it may be difficult to determine 
specific prey types or quantities consumed. We used 
both SCA and SIA to estimate diet of coyotes from 
rural Fresno County, California, the most productive 
agricultural county in the state, with nearly half its land 
area dedicated to farms and rangeland. Stomachs of 55 
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coyotes euthanized as nuisance animals were dissected 
to identify the types of foods eaten, based on bones, 
hair, scales, feathers, and plant parts. We also removed 
muscle tissue (stomach or jaw) from coyote carcasses 
and sent them to the UC Davis Stable Isotope Facility 
to determine their stable carbon and nitrogen isotope 
signatures. Preliminary analysis of stomach contents 
confirm the highly omnivorous diet of rural coyotes, 

which included small mammals, snakes, and birds, as 
well as large numbers of insects and agricultural crops, 
such as grapes and almonds. We will attempt to identify 
the species of mammals prey further by microscopic 
analysis of hair anatomy. When SIA results are received, 
we will compare them to diet estimates based on SCA 
and also to SCA and SIA-based estimates of food habits 
of urban coyotes from southern California.  
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Green Waste Perceptions at California State University, Fullerton

Elijah Slaven
Advisor: Joel Abraham, PhD.
California State University, Fullerton
Department of Biological Science

Abstract

Food waste in landfills is a major contributor to climate change due to the release of
methane into the atmosphere as organic materials decompose. Due to the large volume of food
waste in landfills, highly concentrated pockets of methane build up can occur. One of the major
contributors to green waste in landfills is higher education institutions due to the large volume of
resources consumed on campus. A possible solution to reduce green waste in the landfills would
be to implement composting bins around campus so that green waste could be diverted. A survey
to determine student perceptions of green waste as well as perceived barriers and support for
such a program was created and distributed to students at California State University, Fullerton.
The survey results displayed a high positive attitude toward the environment was present among
students as well as support for a composting program. However, gaps in green waste knowledge
were also present with students having difficulty correctly identifying green waste form other
types of waste. Overall, student support for green waste programs were present and the program
has potential for being implanted across the campus.
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Analyzing the Effect of Experimental Evolution on the Host Microbiome 
in Drosophila melanogaster

Author: Leah Spalding
Advisor: Dr. Parvin Shahrestani
California State University, Fullerton
Department of Biological Science

Abstract

The microbiome, or community of microbes, found within an organism affects its fitness, 
influencing traits such as development, immune defense, and lifespan. We studied how 
experimental evolution for longevity divergence in Drosophila melanogaster populations 
affects the associated microbiome. Moreover, we tested how flies from short- and long-lived 
populations are affected by manipulations to the microbiome. Quantitative analysis of bacterial 
abundance and composition was done by homogenizing and plating whole fly bodies. From this, 
we found that the associated microbiome of populations that have been evolved for prolonged 
lifespan largely consisted of bacteria from the phylum Proteobacteria. In contrast, the associated 
microbiome of populations evolved to be shorter-lived were dominated by bacteria from the 
phylum Firmicutes. To manipulate the microbiome of short- and long-lived flies, axenic flies were 
created by dechorionating D. melanogaster eggs. These eggs were subsequently inoculated with 
symbiotic bacterial species and abundance was surveyed. Preliminary results show that long-
lived flies were more extensively colonized when inoculated with A. pomorum and A. tropicalis. 
Short-lived populations had overall higher microbial abundance, particularly when inoculated 
with L. brevis and L. plantarum. Continued experimentation is necessary to further elucidate the 
interactions between the Drosophila melanogaster microbiome and longevity.
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Chloroplast genomes in the parasitic sandalwood order

Authors: 
WEAVER, T. D.1, LUU, L.1, EDLUND, M2, ROBISON, T.3, SIMENC, M. C.1, BONILLA, 
E.1, SOSA, J.1, SU, H4, NEUBIG, K.5, PETERSEN, G.2, NICKRENT, D. L.5, DER, J. P.1

Advisor: Dr. Joshua Der
 1California State University, Fullerton, USA
 2Stockholm University, Sweden
 3Cornell University, USA
 4University of Taipei, Taiwan
 5Southern Illinois University, Carbondale, USA

Abstract

Parasitic plants exploit their hosts for water and nutrients, often resulting in a decreased reliance
on photosynthetic processes. Increased levels of parasitism and relaxed evolutionary constraint
often result in dramatic changes to the chloroplast genome (i.e. plastome). We sequenced
plastomes in Santalales to explore the evolution of parasitic plant genomes. Santalales is an order
of angiosperms containing over 2000 species in 18 families, with species representing all ranges
of parasitism, from nonparasitic to hemiparasitic and holoparasitic. We hypothesize that species
with increased specialization and host dependence (e.g. mistletoes and holoparasites) will have
lost more plastid genes compared with non-parasitic or generalist root parasites in the order. We
used Illumina shotgun sequencing to extract and assemble plastomes for 50 representative
species in Santalales. Preliminary assembly and gene annotations were used to construct a
phylogeny of 45 species and to examine chloroplast gene loss across the order. A secondary
assembly constructed using NovoPlasty resulted in a higher quality genome sequence and was
used in subsequent analyses. Genomes were aligned to existing Santalales plastomes using
Mauve (implemented in Geneious) and used to manually annotate genes. Our phylogenomic
analyses show strong support for major clades in Santalales and are consistent with previously
published results; however, relationships among some clades remain unresolved. There is a
strong pattern of ndh gene loss associated with increasing levels of parasitism. We present
complete plastome assemblies and detailed gene annotations for five species in Santalales.
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Synthesis and Study of the Pyrochlore La3Sb3Co2O14 for Use as an Oxygen 
Transport Membrane

Authors: Gonzalez Jimenez, Jose L. and Abad, Mark
Advisor: Dr. Allyson M. Fry-Petit
California State University, Fullerton
Department of Chemistry and Biochemistry 

Abstract

Oxygen transport membranes (OTM’s) are a potential replacement to current expensive 
cryogenic methods used to obtain pure oxygen from air. The pyrochlore structure La3Sb3Co2O14 
was synthesized and studied for use as one of these materials due to the hypothesis that it is a 
mixed ionic-electronic conducting membrane (MIECM). Two methods were used to synthesize 
half gram samples, the conventional solid state method and the sol-gel method to the discovery 
that there was no difference in the end product. The relative simplicity of solid state synthesis 
led to its use for an upscale that was used to run variable oxygen experiments. When heating 
samples in a reducing atmosphere the structure decomposed into a multiphase structure, and 
when reheating in an oxygen exposed environment, the original structure was regenerated.  The 
studies also led to the discovery of solid state synthesis’ effectiveness limit, as the x-ray diffraction 
peaks broadened with the upscale. Consequently the sol-gel method was used for further, and 
current experiments to find the specific temperature and time at which oxygen motion begins in 
the system. Current iron doping synthetic studies are being done to compare the pyrochlore to a 
perovskite structure, another potential OTM. 



18

New Approaches for the Treatment of Alzheimer’s Disease: Green 
Chemistry Synthesis and Molecular Modeling Studies of Donepezil-Based 

Analogs

Author: Stephanie Mariel Salvador
Advisor: Stevan Pecic, Ph.D
California State University, Fullerton
Department of Chemistry and Biochemistry

Abstract

	 Alzheimer’s disease (AD) is a debilitating disorder in the elderly affecting around 50 
million people worldwide. No current therapies can prevent, slow, or significantly modify the 
progress of AD. Therefore, the discovery of new therapies is of utmost importance. A low level 
of acetylcholine, an important chemical in the brain, is a significant factor in AD progression. 
One strategy to increase acetylcholine levels in brain regions involved in memory is to inhibit, 
i.e. block the enzyme acetylcholinesterase (AChE), a naturally occurring biological molecule in 
our body that is responsible for the degradation of acetylcholine. To date, there are only three 
FDA approved drugs available for the treatment of AD based on this mechanism; these drugs can 
provide only palliative treatment of mild to moderate AD and in addition show severe side effects. 
Using computer software, we designed several potential therapeutics and calculated their drug 
properties and potential toxicity. We synthesized these analogs using environmentally friendly 
synthetic routes and we plan to assess their inhibition potential against enzyme AChE.

Introduction

	 In Alzheimer’s disease (AD), the immensely destructive nature of this disease has inspired 
many researchers to look for a cure. Currently, research is generally focused on slowing 
its progression, which means that finding a cure is something that still eludes researchers 
today. However, there are current therapeutics to decrease the symptoms associated with 
Alzheimer’s. According to the Cholinergic hypothesis9, AD results from a defect in the 
cholinergic system. One approach (Figure 1) for AD treatment involves drugs that inhibit the 
activity of acetylcholinesterase (AChE), the main enzyme that metabolize the neurotransmitter 
acetylcholine.6 
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      Figure 1.  Acetylcholine hydrolysis catalyzed by AChE

AChE has two main binding domains, the catalytic site and a peripheral anionic site (PAS).3 
Donepezil or  8-((1-benzyl-piperidin-4-yl)-methyl)-3,4-dimethoxy-bicyclo[4.3.0]nona-1(6),2,4-
trien-7-one (brand name Aricept®), an FDA-approved drug, inhibits the enzyme AChE and 
helps reduce the metabolism of acetylcholine.4 There are many known AChE inhibitors, some of 
them naturally occurring compounds- natural products, e.g. galanthamine, nantenine, tacrine, 
and rivastigmine (Figure. 2) 8 and inhibition of the AChE will eventually increase the levels of 
acetylcholine in the brain. Unlike many other AChE inhibitors that pose irreversible inhibition, 
donepezil causes reversible inhibition, which is more valuable in drug discovery process because 
many enzymes, including AChE enzyme are important for general homeostasis. However, the 
effects of AD treatment with donepezil are modest, there are many side effects, and in addition, 
they do not stop full neurodegeneration in Alzheimer’s disease.7

Figure 2.  Known AchE inhibitors
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	 Exploration of Donepezil’s acetylcholinesterase inhibition has been previously published and 
many SAR studies have been reported.10 Several different analogs of donepezil were synthesized 
with various structural changes at Site A (Figure 3), and these modifications led to the significant 
decrease in the inhibition against rat AChE enzyme. These SAR studies at Site A showed the 
importance of the initial moiety for the AChE binding and inhibition. The Site B in Donepezil 
contains a piperidine moiety and modifications in the piperidine ring led to an overall significant 
decrease in the inhibition activity. Site C has also been explored and several different analogs 
were synthesized with various substituents on the benzene ring. Several important SARs were 
observed: ortho-methyl or para-methyl (-CH3) groups generally were very well tolerated and had 
IC50s in low nanomolar range, with values of less than 40 nM. On the other hand, an addition of 
an ortho- or para- nitro (-NO2) group led to a decrease in inhibition against rat AChE enzyme 
with IC50 values of 160 and 100 nM respectively. 

			        Figure 3. Known and future SAR studies of Donepezil analogs

Moreover, molecular modeling studies propose that donepezil and similar analogs bind through 
the Site C into the binding pocket of AChE and targeting this part of the molecule may lead 
to discoveries of novel therapeutics.5 Site C definitely represents a promising area for further 
exploration since the modifications at this site has the potential to lead to identification of more 
potent AChE inhibitors.
	 Herein, we designed several analogs of donepezil at Site C, using available structure-activity 
relationship (SAR) information obtained from previously published studies, synthesized them 
using an environmentally friendly synthetic route, purified and fully characterized using proton 
and carbon NMR spectroscopy. These analogs will be biologically evaluated in AChE inhibition 
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assay according to Ellman’s method.2 Next, we performed molecular modeling studies and all 
synthesized compounds were docked into human acetylcholinesterase enzyme model in order 
to better understand which structural features of molecules are responsible for binding and 
inhibition properties. We also predicted several important pharmacokinetic properties of these 
donepezil analogs. These results will guide future synthesis and SAR studies in order to design 
novel and more potent inhibitors of human AChE enzyme.

Materials and Methods

	 Reagents and solvents were available from Sigma-Aldrich or Fisher Scientific and used as 
supplied. All new compounds were characterized by proton NMR and carbon NMR. NMR 
spectra were measured on a Bruker 400 magnetic resonance spectrometer. 1H chemical shifts are 
reported relative to the residual solvent peak (chloroform = 7.26 ppm as follows: chemical shift 
(δ), proton ID, multiplicity (s = singlet, bs = broad singlet, d = doublet, bd = broad doublet, dd 
= doublet of doublets, t = triplet, q = quartet, m = multiplet, integration, coupling constant(s) 
in Hz). 13C chemical shifts are reported relative to the residual deuterated solvent 13C signals 
(chloroform = 77.2 ppm). High-resolution mass spectra were obtained using a high-resolution 
liquid chromatography mass spectrometer. Microwave reactions were carried out in a CEM 
Discover SP microwave synthesizer. Molecular modeling studies and docking experiments were 
performed using ICM Pro Molsoft software.1

Scheme 1. A Synthetic Route for the Preparation of Donepezil Analogs 
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Results and Discussion

	 We designed four different donepezil analogs, 1-4 (Scheme 1), containing both piperidine 
(Site B) and the 1-indanone moiety (Site A) of donepezil, which was shown to bind to the 
peripheral active site (PAS) of AChE5, and instead of phenyl group at Site C, we introduced 
pyrimidine ring. We expect that binding of the new analogs to the PAS of AChE will not be 
affected since we didn’t make any alterations in the Site A and Site B, therefore the designed 
analogs 1-4 will provide us with the information whether the pyrimidine moiety in the 
proximity of catalytic site of AChE would increase the inhibition. Analogs 1-4 were synthesized 
in a microwave-assisted one-step reaction using reductive amination conditions with 
triacetoxyborohydride as outlined in Scheme 1. In short, starting with the commercially available 
5,6-dimethoxy-2-(4-piperidinylmethyl)-1-indanone and four different aldehydes, we were able 
to obtain desired donepezil analogs 1-4 in moderate yields. All four synthesized analogs were 
subjected to purification using flash chromatography, and the final structures were confirmed 
with proton and carbon NMR spectroscopy. 
	 Next, the binding of the donepezil analogs and AChE was examined in silico. All docking 
studies were performed using the ICM Molsoft package. The ICM score considers several free 
energy terms such as van der Waals, hydrogen bonding, Poisson electrostatic desolvation and 
entropy. The crystal structure of human AChE bound to donepezil was obtained from the Protein 
Data Bank (PDB) – PDB code 4EY7. Donepezil was removed and the AChE enzyme model for 
docking was optimized and generated using the modeling features of the ICM program. After 
energy minimization, donepezil analogs 1-4 were docked into the identified binding region of 
the enzyme model. Donepezil was also docked for comparison. The docking poses suggest that 
all four donepezil analogs bind preferentially to the catalytic site since the three most favorable 
conformations are located in this site. Many non-covalent hydrophobic interactions (Table 1), 
including a hydrogen bond with Phe295 are identified after visual inspection suggesting that these 
analogs may be strong inhibitors of the AchE enzyme. 
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Table 1. Non-covalent interactions
Compound H-bonds Other non-covalent interactions

1 Phe 295 Tyr 72, Trp 86, Gly 121, Tyr 124, Trp 286, Leu 289, Val 294, Phe 297, Tyr 337, Phe 338, Tyr 
341

2 Phe 295 Tyr 72, Trp 86, Tyr 124, Trp 286, Leu 289, Val 294, Phe 297, Tyr 337, Phe 338, Tyr 341, His 
447, Gly 448, Ile 451

3 Phe 295 Tyr 72, Asp 74, Trp 86, Tyr 124, Ser 125, Trp 286, Leu 289, Val 294, Phe 297, Tyr 337, Phe 
338, Tyr 341

4 Phe 295 Tyr 72, Trp 86, Gly 121, Trp 286, Leu 289, Phe 297, Tyr 337, Phe 338, Tyr 341, His 447, Gly 
448, Ile 451, Gly 120 

Donepezil Phe 295 Tyr 72, Asp 74, Trp 86, Gly 121, Tyr 124, Ser 125, Trp 286, Leu 289, Val 294, Phe 297, Tyr 
337, Phe 338, Tyr 341

	 Finally, we calculated and performed predictions of the several pharmacokinetic parameters 
important for the drug development process, Table 2. All four donepezil analogs showed excellent 
predicted octanol/water partition coefficient (clogP) in the range of 3.68-4.87 (the optimal 
cLogP for blood-brain barrier permeability is 2-5), good predicted aqueous solubility (acceptable 
range for clogS is between -6.5 and -0.5 moles/liter) and no unwanted or reactive chemical 
functionalities (referred as “bad groups” in the table). Other predicted values that we examined 
were all within optimum ranges, except overall drug likeness (should be within -1 and 1 range), 
which was close to this range. 

Table 2. Predicted ADMET 
properties

Compound MW cLogP cLogS Drug Like-
ness Bad Groups CACO2 HALF- LIFE 

(h)
HERG Inhi-

bition Tox Score

1 380.488 3.681 -3.302 1.944 0 -5.082 6.72 0.548 0

2 380.488 3.681 -3.79 1.818 0 -5.143 6.72 0.548 0

3 414.93 4.275 -4.66 1.841 0 -5.119 9.13 0.678 0

4 449.372 4.87 -5.59 1.958 0 -5.218 13.8 0.64 0

Donepezil 379.2147 4.73 -4.43 1.557 0 -5.128 6.72 0.457 0
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	 We noticed that even Donepezil, an FDA approved drug, had overall drug likeness above 
the expected range. Predicted Caco2 permeability indicates high permeability (all values above 
-5 suggest a high permeability) and this series of analogs had good predicted values for hERG 
inhibition, namely values above 0.5 indicate high probability for drug candidate of being a hERG 
inhibitor. All final compounds had values close, but still above 0.5, indicating that we should test 
these analogs for hERG inhibition if they progress into clinical trials. Our further prediction of 
plasma half-life showed that these compounds have an excellent predicted half-life, much better 
than Donepezil, ranging from 6.72 hours for analogs 1 and 2, up to 9.13 hours and 13.8 hours 
for analogs 3 and 4, respectively. In addition, all newly synthesized donepezil analogs had no 
unfavorable substructure/substituents, shown as a tox score of 0.
In our future work, we plan to evaluate AchE inhibitory activity of these four donepezil 
analogs. The inhibition potency can be measured quantitatively using microplate assay based 
on Ellman’s method. The enzyme hydrolyzes the substrate acetylthiocholine resulting in the 
product thiocholine which reacts with Ellman`s reagent (DTNB) to produce 2-nitrobenzoate-5-
mercaptothiocholine and 5-thio-2-nitrobenzoate which can be detected at 405 nm. 
	 In conclusion, our work here indicates that the donepezil scaffold represents an excellent 
starting point to develop new AChE inhibitors. 

Experimental 

	 5,6-Dimethoxy-2-(4-piperidinylmethyl)-1-indanone, HCl salt (680.40 mg) was dissolved in 
25 mL aqueous solution of saturated sodium bicarbonate and 25 mL of ethyl acetate. It was stirred 
for approximately 25 minutes and the organic layer was separated. Aqueous layer was washed 
twice with 25 mL dichloromethane, organic layers were combined, dried over anhydrous sodium 
sulfate and concentrated. Freebased 5,6-dimethoxy-2-(4-piperidinylmethyl)-1-indanone was 
obtained as a pale orange solid (350 mg). 

3,4-dimethoxy-8-((1-((pyridin-3-yl)-methyl)-piperidin-4-yl)-methyl)-bicyclo[4.3.0]nona-
1(6),2,4-trien-7-one, 1: 250 mg (0.86 mmol) of 5,6-dimethoxy-2-(4-piperidinylmethyl)-
1-indanone, 476 mg (2.58 mmol) of sodium triacetoxyborohydride, and 73 uL of 
3-Pyridinecarboxaldehyde (0.86 mmol) were dissolved in 20 mL of anhydrous dichloromethane, 
and the reaction mixture was subjected to microwave irradiation at 80 °C for 20 min. The mixture 
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was transferred to a separatory funnel and the organic layer was washed with aqueous solution 
of saturated NaHCO3 (20 mL). The organic layer was then dried over anhydrous sodium sulfate, 
filtered and concentrated. The crude product was purified by column chromatography (2-5% 
methanol/dichloromethane) and 258.4 mg, 73.1% of 1 was obtained as a white solid. 1H NMR 
(400 MHz, CDCl3) δ 8.51 (d, J = 1.2 Hz, 2H), 7.31-7.27 (m, 2H), 7.17 (s, 1H), 6.86 (s, 1H), 3.96 
(s, 3H), 3.90 (s, 3H), 3.50 (s, 2H), 3.24 (q, J = 1.2 Hz, 1H), 2.88-2.86, (m, 2H), 2.70 ( q, J = 14 Hz, 
2H), 2.05-1.99 (m, 2H), 1.95-1.88 (m, 1H), 1.77-1.67 (m, 2H), 1.53-1.51 (m, 1H), 1.40-1.33 (m, 
3H). 13C NMR (100 MHz, CDCl3): δ 207.7, 155.5, 149.6, 149.4, 148.7, 148.0, 129.2, 123.9, 121.1, 
107.4, 104.4, 62.0, 56.2, 56.1, 53.9, 45.4, 38.6, 34.2, 33.3, 32.9, 31.8 ppm.

3,4-dimethoxy-8-((1-((pyridin-4-yl)-methyl)-piperidin-4-yl)-methyl)-bicyclo[4.3.0]nona-
1(6),2,4-trien-7-one, 2: 250 mg (0.86 mmol) of 5,6-dimethoxy-2-(4-piperidinylmethyl)-
1-indanone, 476 mg (2.58 mmol) of sodium triacetoxyborohydride, and 74 uL of 
4-Pyridinecarboxaldehyde (0.86 mmol) were dissolved in 20 mL of anhydrous dichloromethane, 
and the reaction mixture was subjected to microwave irradiation at 80 °C for 20 min. The mixture 
was transferred to a separatory funnel and the organic layer was washed with aqueous solution 
of saturated NaHCO3 (20 mL). The organic layer was then dried over anhydrous sodium sulfate, 
filtered and concentrated. The crude product was purified by column chromatography (2-5% 
methanol/dichloromethane) and 181.1 mg, 69.1% of 2 was obtained as a white solid. 1H NMR 
(400 MHz, CDCl3) δ 8.53-8.50 (m, 2H), 7.24 (d, J=8 Hz, 1H), 7.29-7.26 (m, 1H), 7.17 (s, 1H), 6.86 
(s, 1H), 3.96 (s, 3H), 3.90 (s, 3H), 3.55 (s, 2H), 3.24 (q, J =8 Hz, 1H), 2.93-2.89, (m, 2H), 2.72-2.67 
(m, 2H), 2.07-2.01 (m, 3H), 1.94-1.88 (m, 1H), 1.77-1.68 (m, 2H), 1.58-1.48 (m, 1H), 1.40-1.30 
(m, 3H). 13C NMR (100 MHz, CDCl3): δ 155.6, 150.4, 149.5, 148.8, 148.5, 137.2, 133.4, 129.3, 
123.5 107.4, 104.5, 60.3, 56.3, 56.2, 53.6, 45.4, 38.7, 34.2, 33.4, 32.7, 31.6 ppm.  

8-((1-((3-chloro-pyridin-4-yl)-methyl)-piperidin-4-yl)-methyl)-3,4-dimethoxy-bicyclo[4.3.0]
nona-1(6),2,4-trien-7-one, 3: 250 mg (0.86 mmol) of 5,6-dimethoxy-2-(4-piperidinylmethyl)-
1-indanone, 546 mg (2.58 mmol) of sodium triacetoxyborohydride, and 123 mg of 3-Chloro-4-
pyridinecarboxaldehyde (0.86 mmol) were dissolved in 20 mL of anhydrous dichloromethane, 
and the reaction mixture was subjected to microwave irradiation at 80 °C for 20 min. The mixture 
was transferred to a separatory funnel and the organic layer was washed with aqueous solution 
of saturated NaHCO3 (20 mL). The organic layer was then dried over anhydrous sodium sulfate, 
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filtered and concentrated. The crude product was purified by column chromatography (2% 
methanol/dichloromethane) and 100 mg, 30% of 3 was obtained as a white solid. 1H NMR (400 
MHz, CDCl3) δ 8.50 (s, 1H), 8.43 (d, J = 4.8 Hz, 1H), 7.48 (d, J = 5 Hz, 1H), 6.86 (s, 1H), 7.16 (s, 
1H), 6.85 (s, 1H), 3.95 (s, 3H), 3.90 (s, 3H), 3.58, (s, 2H), 3.24 (q, J =8.4 Hz, 1H), 2.89-2.84 (m, 
2H), 2.70 (d, J = 14.4 Hz, 2H), 2.11 (t, J = 11.2 Hz 2H), 1.96-1.89 (m, 1H), 1.78-1.67 (m, 2H), 1.51 
(s, 1H), 1.43-1.31 (m, 3H). 13C NMR (100 MHz, CDCl3): δ 207.8, 155.7, 149.7, 149.3, 148.9, 147.9, 
146.0, 131.9, 129.5, 124.5, 107.5, 104.6, 58.7, 56.4, 56.3, 54.3, 45.6, 38.9, 34.4, 33.5, 33.3, 32.1 ppm.

8-((1-((3,5-dichloro-pyridin-4-yl)-methyl)-piperidin-4-yl)-methyl)-3,4-dimethoxy-
bicyclo[4.3.0]nona-1(6),2,4-trien-7-one, 4: 250 mg (0.86 mmol) of 5,6-dimethoxy-2-(4-
piperidinylmethyl)-1-indanone, 476 mg (2.58 mmol) of sodium triacetoxyborohydride, and 
151.35 mg of 3,5- Dichloro-4-pyridinecarboxaldehyde (0.86 mmol) were dissolved in 20 mL of 
anhydrous dichloromethane, and the reaction mixture was subjected to microwave irradiation 
at 80 °C for 30 min. The mixture was transferred to a separatory funnel and the organic layer 
was washed with aqueous solution of saturated NaHCO3 (20 mL). The organic layer was then 
dried over anhydrous sodium sulfate, filtered and concentrated. The crude product was purified 
by column chromatography (0-2% methanol/dichloromethane) and 70 mg, 16.9% of 4 was 
obtained as a white solid. 1H NMR (400 MHz, CDCl3) δ 8.45 (s, 2H), 7.16 (s, 1H), 7.48 (d, J = 5 
Hz, 1H), 6.84 (s, 1H), 3.95 (s, 3H), 3.89 (s, 3H), 3.69, (s, 2H), 3.22 (q, J =8.4 Hz, 1H), 2.89-2.85 
(m, 2H), 2.71-2.66 (m, 2H), 2.26-2.19 (m, 2H), 1.91-1.85 (m, 1H), 1.72-1.62 (m, 3H), 1.55-1.44 (s, 
1H), 1.33-1.20 (m, 4H).  13C NMR (100 MHz, CDCl3): δ 207.8, 155.6, 149.5, 148.8, 147.8, 143.3, 
134.1, 129.4, 107.4, 104.5, 100.1, 56.3, 56.2, 56.1, 54.1, 45.5, 38.7, 34.4, 33.4, 33.1, 31.9 ppm.
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Abstract

	 The objective of this experiment is to validate in silico model of human soluble epoxide 
hydrolase enzyme (sEH) for future docking experiments. The model was built using a crystal 
structure of the enzyme provided by a protein database (RCSB Protein Database) and ICM 
Pro molecular modeling software, and validation of the model was obtained using an analysis 
verification server from UCLA. After observations of the five validation criteria given from the 
server, the model was used for the docking experiment. A known sEH inhibitor AUDA was 
docked using ICM Pro software, and energy scores were retrieved, and docking poses were 
analyzed. The docking results show that our in silico model for sEH is suitable as a template for 
future docking experiments and structural-based drug discovery. 

Introduction

	 Human soluble epoxide hydrolase (sEH) enzyme is a type of enzyme that converts epoxide 
groups of naturally occurring fatty acids to corresponding alcohol groups by the addition of 
water. This enzyme is widely distributed in mammalian tissues where the highest concentrations 
are located in the liver, kidney, intestine, and vascular tissue1. Epoxyeicosatrienic acids (EETs) 
are one of three derivatives of arachidonic acid, which is synthesized from cytochrome P450 
epoxygenase (CYP) shown in Figure 1. 
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Figure 1. Metabolic degradation of Arachidonic acid

	 EETs regulate ion transport and gene expression by producing anti-inflammatory, 
antihypertensive, antinociceptive, and pro-fibrinolytic effects.1 However, sEH converts EETs 
to dihydroxyeicosatrieoic acids (DHETs), thereby diminishing the biological activity of EETs. 
Inhibition of sEH, therefore, represents an attractive approach to increase EET levels, which can 
be beneficial for cardiovascular diseases, pain, inflammation, diabetes, and kidney disease.2 The 
X-ray crystallographic structure of human sEH and a known inhibitor  (AUDA), shown in Figure 
2, complex revealed the catalytic pocket and key structural features required to inhibit the sEH 
enzyme. Two tyrosines (Tyr383and Tyr466) and one aspartic acid (Asp335) residues, located in 
the hydrolase catalytic pocket of sEH, are involved in the degradation of EET - tyrosine residues 
act as hydrogen bond donors to promote the epoxide ring-opening by Asp335.2  
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Figure 2. 12-3(3-adamantan-1ylureido) dodecanoic acid (AUDA)

As seen in Figure 2, AUDA3 has a urea moiety connected to the hydrophobic adamantly ring. 
The urea group allows the inhibitor to bind to sEH and is a vital part of the compound. However, 
the urea-based inhibitors often suffer from poor solubility and stability, which hinders their 
pharmacological use in vivo.4 
	 Our research interest is to design new, non-urea compounds that will inhibit enzyme sEH, 
which will eventually be used as therapeutics for various medical conditions, including pain and 
inflammation. The goal of this project is to prepare and test a valid in silico model for human sEH 
enzyme, which will be used for future docking experiments and will help us to guide the future 
design of sEH inhibitors. Aleksei Solomatov 

METHODS 

In silico Model Building, Model Evaluation, and Docking Experiments 

X-ray crystallographic structure of human sEH enzyme was retrieved from RCSB Protein 

Data Bank- PDB code: 4HAI.5 The PDB was then brought into ICM Pro and converted into an 

ICM file. Conversions to the ICM model were performed by optimization of hydrogens, certain 

amino acids (H, P, N, C, Q), and ligand tautomer, assignment of the secondary structure, and 

approximations of the formal charges of the ligands. The original PDB file had an inhibitor named 

ai23, n-cycloheptyl-1-[(2,4,6-trimethylphenyl) sulfonyl] piperidine-4-carboxamide, which was 

removed. The in silico model of sEH was then converted back to the PDB file and uploaded to the 

verification server. Evaluations were provided via a server of the UCLA DOE Institute for 

Genomic and Proteomics. Verify3D6, ERRAT7, and PROCHECK8, WHAT-IF9, and PROVE10 

were used to structurally verify and provide additional data on the in silico model.11 Once 

verification scores were retrieved, the model was brought back into ICM Pro, where the model’s 

binding pockets were identified and listed. An amino acid sequence of Met418, Tyr381, Asp333, 

and His3372 was used as the key amino acids for defining the binding pocket. The structure of the 

known sEH inhibitor AUDA was drawn in ChemDraw and energy minimized using ICM Pro and 

saved. The AUDA was then docked into in silico model, which brought the E-DOCK scores, and 

a 2D model was obtained to display the inhibitor’s interactions with the in silico model’s binding 

pocket. 
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DISCUSSION

Model Evaluation: 
	 The in silico model was evaluated first with the program Procheck. PROCHECK is used 
to check the detailed residue-by-residue stereochemical quality of a model structure. The 
Ramachandran plot gives us an analysis of the geometrical aspects of the model by using a plot 
of φ-ψ torsion angles for all residues seen. The Ramachandran plot can be found in Figure 3. 
As shown in the plot statistics, the residues in most favored regions of [A, B, L] display that our 
model has a high amount of allowed regions (>90% residues). The Goodness factor or G-Factor 
shows the quality of the model by its dihedral, covalent, and bond angles, which should stay 
above the threshold of -0.5 to be a dependable model. In our case, the overall G-factor parameter 
value is at 0.2, which shows that our bond angles are right. Upon additional observation, the 
Ramachandran plot also has 89.1% of residues being in the most favorable position, while another 
10.1% of residues are in additional allowed regions. These percentages are suitable enough to 
show the Procheck evaluation as a notable pass for the in silico sEH model.
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Figure 3. Ramachandran Plot of sEH in silico model

The ERRAT evaluation results are shown in Figure 4. ERRAT is a so-called “overall quality factor” 
for nonbonded atomic interactions (CC, CN, CO, NN, NO, and OO), and higher scores mean 
higher quality, which is displayed by both thresholds of 95% warning and 99% error. Structures 
that present value above 90% are deemed suitable by the ERRAT test. The in silico model of 
human sEH, PDB: 4HAI, has an overall quality factor of 96.9298, which is an excellent score to 
deem the structure of this model as valid. 
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Figure 4. ERRAT error values of sEH in silico model

The Prove evaluation results are shown in Figure 5. The graphs give an average volume Z-score 
of all the atoms in the in silico sEH structure. Z-score is the calculated difference between the 
volume of the atom and the average atomic volume of the corresponding atom type, which is then 
divided by the standard deviation of the appropriate distribution.  Z-score standard deviation 
(Zstd) scores the atoms in the test proteins, which describe the standard deviation of their volume 
to the average (Zsm) for the type of atom. At the same time, a structural Z-score RMS (Zrms) 
determines the structural quality of the model. Zrms is calculated by taking the square root of 
the total scores. The boundary for Zrms scores is 1.2 with anything above, resulting in a poor 
resolution. In order to have a successful Prove test, our model must be around the 1.0 area. As 
shown in Figure 5. The Zsm score is near 1.0 with some deviation. Also, our model does have 
3.5% total buried outlier atoms, which validates the success of the model since the caution range 
is 1-5% with an error range of anything above 5%. 

Figure 5. Z-score results from Prove test of in silico sEH model
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The results of the Verify 3D evaluation is shown in Figure 6. VERIFY-3D uses energetic and 
empirical methods to produce averaged data points for each residue to evaluate the quality of 
protein structures. Using this scoring function, if more than 80% of the residue has a score of 
>0.2, then the protein structure is considered high quality. The program works best on proteins 
with at least 100 residues and measures the score of the compatibility of a model and its sequence. 
The results obtained represent the average data score of the in silico sEH model in comparison 
with the template of Verify 3D. The data in Figure 6 show that 84.40% of residues have an average 
3D-1D score of >= 0.2, meaning that at least 80% of amino acids have scored less than or equal to 
0.2 percent. 

Figure 6. Verify3D of in silico sEH model

WHAT CHECK is a program that evaluates: bond lengths, bond angles, omega angle restraints, 
side-chain polarity, improper dihedral distribution, and inside/outside distribution. The summary 
gives a useful report for proper structure analysis with careful calculations.  Table 1. Shows 
an organized table of all the scores found in the WHAT CHECK analysis. The first part of the 
table from 1st generation packing quality to RMS Z-scores should be positive; however, having 
a negative score doesn’t mean the structure fails the analysis. Positive score only shows that the 
score is above average, while negative can just deem the structure scores as average. The second 
part (ranges from Bond lengths to side-chain planarity) displays how well the in silico sEH model 
adjusts to common refinement constraint values, which should have a number close to 1.0 and 
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as shown by the results significant of the scores stay relatively close to 1.0. Lastly, there is one 
abnormality in the B-factor distribution and backbone conformation. It can be suggested that 
the backbone conformation can’t be aligned with any other backbone structures in the database, 
which is the same possibility for the B-factor distribution. However, with these scores, the overall 
summary report of the WHAT CHECK results in a pass, validating this in silico model.

Table 1. WHAT CHECK for in silico model. 

Overall Summary Report: PASS
1st generation packing 
quality -0.869
Ramachandran plot appear-
ance -2.609
Chi-1/Chi-2 rotamer normal-
ity -2.066
Backbone conformation -32.335
Bond Lengths 0.515
Bond Angles 0.677
Omega angle restraints 1.314
Side Chain Planarity 0.462
B-factor distribution 54.326

Docking Experiments: 

To further validate the in silico model of the sEH enzyme, molecular docking experiments were 
performed with the program ICM Pro. The known inhibitor AUDA was interactively docked, 
and the E-dock score of  -33.19 was obtained after this procedure. The 2D diagram in Figure 
7. shows the amino acid interactions with the AUDA inhibitor in the catalytic site of the in 
silico model of the sEH enzyme. The green and grey colors show the noncovalent hydrophobic 
interactions between the surrounding amino acids and the inhibitor AUDA. Inspection of the top, 
binding pose in the catalytic site indicates that AUDA interacts with the enzyme via noncovalent 
interactions between adamantyl moiety of AUDA, and residues Proline 229 and Arginine 103. 
Two hydrogen bonds were observed: the one between the oxygen of the urea functional group of 
the inhibitor AUDA and Threonine 230, and the second one between the carboxylic acid moiety 
of AUDA and Glutamine 138. Other hydrophobic interactions help to stabilize the AUDA in the 
catalytic site. All interactions are listed in Table 2. with the distances in Angstroms. 
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Figure 7. The binding pose of the inhibitor AUDA in the catalytic site of the human sEH model

Table 2. Non-covalent interactions of AUDA inhibitor within the catalytic pocket.

Resi-
due Size Type at Distance

W525 1.033264 hbond o1 2.564312

H524 1.337716 hbond o2 2.729384

Y466 0.937354 hbond o3 2.548728

D335 2.199965 hydrophob c21 4.383119

W336 2.611098 hydrophob c14 3.220187

M339 0.692859 hydrophob c20 4.452448

T360 0.686042 hydrophob c22 3.889638

F381 0.748289 hydrophob c17 3.974089

Y383 1.532805 hydrophob c12 4.476076

S412 1.02566 hydrophob c3 3.868343

M419 1.315517 hydrophob c6 2.692708

F497 0.709106 hydrophob c3 4.08035

V498 0.726371 hydrophob c6 3.842652

L499 1.427013 hydrophob c17 3.578437
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Conclusion

In the present investigation, we have simulated and evaluated in silico model of the sEH 
enzyme, based on the crystal structure of human soluble epoxide hydrolase complexed with 
N-cycloheptyl-1-(methylsulfonyl)piperidine-4-carboxamide. The visual inspection of docked 
AUDA and evaluation of docking results in Figure 7. and Table 2. indicate that our model has 
significant H-bonds interaction with Tyr 466, and the urea moiety is in the proximity of Asp 355 
and Tyr 383 residues. Also, two additional hydrogen bonds are stabilizing this complex. Overall, 
AUDA has been perfectly docked, which helps represent an excellent template for future docking 
experiments. The docking experiments of known sEH inhibitor AUDA, however, didn’t correlate 
with the previously published data. Namely, the obtained docking score (E-dock) is in the 
acceptable range. Still, we observed that the fundamental interactions important for potent sEH 
inhibition, Tyrosine 383, Tyrosine 466, and Aspartic acid 335 residues are not directly involved in 
the binding with the AUDA in our model. Still, these key residues are in the proximity, and our 
future studies will be focused on improving our in silico model and adjusting the binding pocket 
around the catalytic site. The detailed structural understanding will help the structure-based 
design of novel sEH inhibitors.
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Abstract

	 Copper (Cu) is an essential trace element that is maintained at nearly constant levels in the 
blood. In mammals, ATP7B is a Cu pump that enables the process of excreting excess Cu via 
the bile. Previous studies have shown that in Cu-overloaded systems where ATP7B is defective, 
higher than normal Cu concentrations are found in the urine, indicating that there may be an 
alternate exit route for Cu through the kidneys. Past investigations revealed that a small Cu 
carrier (SCC) is implicated in this process, and our laboratory found it was also present in the 
blood plasma. SCC was found to be around 1700 Da in size, but little else is known about its 
chemical nature. As such, current studies are focused on determining a sequence of effective 
purification methods for SCC with the goal of isolating large amounts of the molecule for 
further analysis by techniques such as mass spectrometry and solution NMR, for full structure 
determination. For this purpose, purification trials were performed on commercially available pig 
plasma, which we found had higher concentrations of SCC than in other species. Thus far, our 
data show that one effective method of purifying pig plasma SCC begins with ultrafiltration of 
the plasma using a 10 kDa cutoff filter. This is followed by another round of ultrafiltration using 
a 3 kDa filter. The resulting 3 kDa filtrate (containing molecules smaller than 3000 Da), typically 
has Cu concentrations of around 30 ng/mL. This is then dialyzed over several days in doubly-
deionized water (ddH2O) with filter tubing containing 0.1 – 0.5 kDa cutoff pores (Repligen). 
Such filters improved Cu/A220 ratios from 6 to about 20, with a recovery of about 70% of the 
SCC-Cu. Efforts toward scaling up this process resulted in the ability to accommodate more than 
10 times the amount of pig plasma originally used, and thousands of ng of Cu. Following this, 
some other separation methods were tested including native polyacrylamide gel electrophoresis 
(native PAGE) in 10% acrylamide gels, small pore size exclusion chromatography (SEC) using 100 
mL Biogel P4 columns and ddH2O, and hydrophilic interaction liquid chromatography (HILIC). 
Native PAGE showed the SCC-Cu migrated slowly through the gel, indicating a low charge/
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mass ratio, but offered poor recovery, while SEC has yielded more promising results with 50% 
recovery and average Cu/A220 ratios of about 233 across two Cu peaks. Trials using HILIC as a 
purification method have produced slightly lower recovery than those for SEC but still greater 
than those for Native PAGE. Preliminary SEC and HILIC results showing multiple peaks also 
suggest that SCC may be an aggregate molecule which warrants further studies. Overall, our 
purification results consistently show high SCC-Cu recovery and purity, suggesting it can be used 
as a standard protocol for SCC isolation.

Introduction

	 Copper (Cu) is an essential trace element that plays several different roles in the body. It is 
used, for example, as a cofactor in Complex IV of the electron transport chain, enabling aerobic 
respiration. It is also a cofactor in superoxide dismutase and thus plays a role in neutralizing 
reactive oxygen species. The typical amount of Cu in an average 70 kg human adult is around 110 
mg and it has been observed that the concentration of Cu in blood and tissue rarely changes. This 
is the case in humans and most other mammals. The circulation and regulation of Cu in a healthy 
human adult involves mainly the gut, liver, and kidney along with Cu-carrying plasma proteins 
like ceruloplasmin and albumin. About 1 mg of Cu is consumed from the diet. As Cu travels 
down the esophagus and into the stomach, it is joined by Cu from various gastric secretions 
such as saliva (0.15 mg) and gastric juices (0.15 mg). In the duodenum, biliary (0.6-6.0 mg) and 
pancreatic (0.5 mg) Cu are secreted into the Cu pool after which some of the Cu is re-absorbed 
through enterocytes. Most of the Cu entering the blood at this point bind to plasma proteins and 
make their way either to parts of the body where Cu is most needed or to the liver where the 
process of excreting excess Cu begins.

	 Indeed, the primary mechanism for Cu excretion and thus Cu homeostasis, occurs in the 
liver, relying mainly on a Cu pump called ATP7B. This enzyme is found mostly in hepatocytes 
on the membrane of the trans-Golgi network (TGN). As Cu approaches hepatocytes by way 
of Cu-carrying plasma proteins, Cu is reduced and taken in to the cell by membrane enzyme 
copper transporter 1 (CTR1). A chaperone protein, ATOX1, brings Cu from CTR1 to the TGN 
where ATB7B can pump it into the TGN lumen. Vesicles budding off of the TGN membrane that 
contain Cu and ATP7B can find their way to the membrane of the hepatocyte that forms the bile 
canaliculus leading to a bile duct and ultimately the gall bladder. Cu is then released into the bile. 
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Notably, Cu in the bile does not re-enter the exchangeable Cu pool as it travels again through the 
intestinal tract. Additionally, ATP7B found in the vesicles from the TGN membrane can fuse with 
the hepatocyte membrane adjacent to the bile canaliculi. This allows ATOX1 carrying excess Cu 
from the blood to bypass the TGN and deposit Cu to these ATP7B pumps directly for excretion 
via the bile. 

	 Previous studies have shown that in Cu-overloaded mammals, the typical route for Cu 
excretion changes. In Wilson’s Disease, the most well-studied Cu-overload condition, a mutation 
in the ATP7B gene hinders fecal extraction of Cu via the bile. As such, patients with Wilson’s 
Disease can suffer Cu toxicosis as Cu accumulates in the liver. Indeed, liver damage is often 
observed in such patients and brain and eye damage can occur as well if the condition is not 
properly treated, typically using Cu chelation therapy. The damage is thought to be due to 
increased levels of reactive oxygen species that can be produced by Cu (and Fe) ions through 
Fenton chemistry.  

	 It has been observed that in Wilson’s Disease mice, there are higher than normal Cu 
concentrations in the urine, indicating that there is an alternate route for Cu excretion when 
the typical mechanisms for biliary excretion are not functional. Further, this implicates a small 
copper carrier molecule (SCC) in the process of urinary Cu excretion as the glomerulus of the 
kidney filters out materials larger than 30 kDa in size (ceruloplasmin is ~130 kDa in size, albumin 
~70 kDa).  Previous studies using size exclusion chromatography in a small pore gel column 
(Superdex 30 Increase) showed that SCC has a molecular weight of about 1700 Da, which would 
be able to pass through the glomerulus. Additional characterization studies revealed that SCC has 
a negative charge at neutral pH, has a mass-to-charge ratio of 845, and contains Cu2+ bound to N 
and O ligands. However, there is still much to discover about the structure of SCC.

	 Thus, our primary aim is to elucidate the structure and function of SCC. Efforts currently 
are focused on establishing a sequence of steps for large-scale purification of SCC pig plasma. 
Commercially available blood plasma from pigs was chosen for this study because we have found 
pigs to have higher concentrations of SCC-Cu in their plasma compared to that of other species. 
The most pure samples will be combined and analyzed using mass spectrometry (including 
electrospray), EPR, and solution NMR for full structure determination.
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Methods

Dialysis

	 Dialysis was performed on samples of 3 kDa ultrafiltered pig plasma. Volumes of 3 kDa 
filtrate ranged from 10 mL to 140 mL. Samples were secured inside of tubing by using two clips 
at each end.  The tubing used, manufactured by Repligen, has a molecular weight cutoff of 0.1 - 
0.5 kDa and a flat width of 31 mm. Tubes containing sample were then completely submerged 
in a container of ddH2O and stirred continuously. The volume of ddH2O used was around 100 
times the amount of sample being dialyzed. A typical dialysis procedure lasted two days with the 
dialysis solution being refreshed at intervals of 30 min, 30 min, 1 hour, and overnight. The volume 
of dialyzed sample often grew to twice the original volume due to osmosis.

Lyophilization

	 Lyophilization, using a VirTis Benchtop Lyophilizer, required samples to be frozen to at least 
–80 degrees Celsius before being applied to the apparatus. The sample was lyophilized to complete 
dryness which required a few days to a week, depending on the amount of sample being frozen. 
The volume of sample typically used at this step ranged from 15 mL to a few hundred milliliters.

Native PAGE

	 Native PAGE was performed using tris-glycine as upper and lower tank buffers. The upper 
tank also included 1 mL of 0.01% bromophenol blue as the tracking dye. Gels were composed 
of 10% acrylamide and polymerized inside of plastic tubes. After tubes were added to the 
electrophoresis unit, 20 mA of electrical current was applied (5 mA per tube for four tubes 
being run simultaneously, typically). Following electrophoresis, each tube was sliced into eight 
sections roughly equal in size. In an effort to elute any Cu present within the gel, each portion was 
submerged in 1 mL of ddH2O for a few hours. Each of the resulting solutions were subsequently 
measured for Cu.

Size Exclusion Chromatography (SEC)

	 Separation using SEC involved a 100-mL Biogel P4 column equilibrated with ddH2O. Sample 
volumes that were added to the column were typically 1 mL and contained around 1000 ng of Cu. 
Samples, at times, required centrifugation in order to remove any precipitates that were present 
after reconstitution of the dried, lyophilized sample. Fractions of about 2 mL (60 drops) were 
collected continuously using the BIO-RAD Model 2110 Fraction Collector up to a total eluate 
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volume of around 120 mL. Each fraction was then measured for Cu and UV absorption at 220 
nm.

Hydrophilic Interaction Liquid Chromatography (HILIC)

	 A PolyLC Inc. polyhydroxyl A 5uM hydrophilic interaction liquid chromatography 
(HILIC) column was used in the BioEad BioLogic DuoFlow instrument and software. The 
buffers used were 65% acetonitrile in 20 mmol tetramethylammonium phosphate buffer or 60% 
acetonitrile in the 20 mM tetramethylammonium phosphate buffer and 10% acetonitrile in 
the tetramethylammonium phosphate buffer. The software created a gradient that started with 
the high acetonitrile content to the 10% acetonitrile. The sample injected into the column was 
a concentrated 3 kDa filtrate dissolved in 1 ml of a high percentage acetonitrile in a 20 mmol 
tetramethylammonium phosphate buffer. The fractions collected were about 1 mL, due to the 
1 mL flow rate. To start 7 ml of the high acetonitrile concentration was used, and the gradient 
consisted of 18 ml. The end of the run used 5 ml of the 10% acetonitrile in the tetramethyl 
ammonium phosphate buffer.  Each fraction was collected into Eppendorf tubes, and the fractions 
were evaporated before testing, since the acetonitrile used is highly volatile. Once the buffer was 
removed, each fraction was then reconstituted in about 1 ml of ddH2O to ensure that all fractions 
had the same volume.	

Atomic Absorption Spectrometry

	 Cu concentrations were measured using the Perkin-Elmer AAnalyst 600. The apparatus was 
set up and operated according to the manufacturer’s suggested protocol for Cu analysis.

UV Spectrophotometry

	 To measure the overall amount of material in a sample, UV light absorbance at 220 nm was 
measured. This was done using the Beckman Coulter DU 800 Spectrophotometer which was set 
up and operated according to the manufacturer’s suggested protocol for sample analysis.

Calculating Sample Purity and Cu Recovery

	 Cu recovery and sample purity were the primary metrics for gauging the success of a 
procedure and the overall purification. Recovery is given as a percentage by dividing total Cu in 
a sample after the procedure(s) by total Cu before the procedure(s). Purity is given by the ratio of 
Cu concentration to UV light absorbance at 220 nm (Cu/A220). 
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Results
Determining Dialysis Tubing Cutoff Size

	 In order to determine which dialysis tubing would generate the best SCC-Cu recovery and 
most effective removal of contaminants from 3 kDa ultrafiltered samples of pig plasma, several 
trials of dialysis were performed. For the dialysis solution, either ddH2O or 5 mM potassium 
phosphate buffer at pH 7 was used. For the dialysis tubing, molecular weight cutoffs ranging from 
0.1 - 0.5 kDa to 1 kDa were used. The Cu concentration, purity and recovery of each sample were 
measured for each condition as shown in Table 1. Dialysis solutions were refreshed at increasingly 
long intervals, specifically at 30min, 30min, 1hr, and overnight.

Dialysis Solution Tubing Cutoff Size 
(kDa)

[Cu] (ppb) Cu/A220 Cu Recovery (%)

ddH2O 1 -1 4 1
5 mM K PO4 (pH 7) 1 -1 -10 -3
ddH2O 0.5 - 1 22 24 28
5 mM K PO4 (pH 7) 0.1 - 0.5 24 25 74
ddH2O 0.1 - 0.5 29 27 86

Table 1 - Dialysis Tubing Trials: Several trials were performed to determine which dialysis cutoff filter and which 
dialysis solution generated the best Cu recovery and purity. Doubly-deionized water and 5 mM K Phosphate were 
investigated as potential dialysis solutions. Tubing cutoff sizes ranged from 0.1 - 0.5 kDa up to 1 kDa. Dialysis 
solutions were refreshed at increasingly long intervals over a couple of days.

	 The data showed that tubing with the smallest pores, 0.1 - 0.5 kDa, gave the best recovery 
compared to those with larger sized pores. Using water as the solvent also seemed to be better for 
Cu recovery than using buffer. The data also show that the smallest pore dialysis resulted in better 
purity of the SCC, which is indicated by the ratio of Cu/A220, A220 measuring the presence of 
molecules as a whole in the sample. Based on these results it was decided that 0.1 - 0.5 kDa cutoff 
tubing should be used for future purifications.

	 The volume of 3 kDa filtrate before and after dialysis was too large to be used effectively in 
further purification techniques such as size exclusion chromatography (SEC) and hydrophilic 
interaction liquid chromatography (HILIC). As such, samples needed to be concentrated in 
order to test such techniques and thus, the effects of lyophilization to concentrate the dialyzed 
filtrate was examined. For this we allowed the sample to lyophilize over several days to complete 
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dryness. Afterward, we dissolved the dried sample in ddH20. For every 37.5 mL of dialyzed 3 
kDa filtrate, we used 6 mL of ddH2O or an amount proportional to this ratio if the filtrate volume 
was different. The data in Table 2 show that concentration by lyophilization resulted in a more 
than 5-fold increase in SCC purity and that Cu recovery remained high. Thus, we concluded 
that lyophilization to complete dryness should follow dialysis as a preparatory step for further 
purification.

Cu/A220 Cu Recovery (%)

3K Filtrate 5 N/A
3K Dialyzed 11 74
3K Concentrated 60 64

Table 2 – Sample purity (Cu/A220) and Cu recovery was measured at each major stage of the most current 
purification process, namely after ultrafiltration, after dialysis, and after lyophilization-reconstitution.

	 Although concentrated samples possessed fairly high SCC purity, further purification was 
needed in order to obtain meaningful results when subsequently applying the sample to various 
structural analysis methods such as solution NMR and mass spectrometry. One of the first 
methods that was trialed was native polyacrylamide gel electrophoresis (native PAGE) using 10% 
acrylamide tube gels. Each gel received 500 uL of concentrated 3K filtrate containing about 200 
ng of Cu and subjected to about 5 mA of electrical current. Following electrophoresis, the gel 
was sliced into 8 sections and measured for Cu. Figure 1 shows that much of the Cu remained 
within the first section of the gel indicating that the SCC-Cu migrated slowly. The data also 
show, however, that the concentration of Cu in the first section is less than 10 ppb (ng/mL). As 
each section was less than 1 mL, this indicated that less than 10 ng of Cu was retained after the 
procedure. Indeed, all native PAGE trials resulted in less than 5% Cu recovery. As such, native 
PAGE was eliminated as a potential purification step following ultrafiltration, dialysis, and 
lyophilization. 
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Figure 1 – Further separation using native PAGE: 500 uL of concentrated 3K filtrate containing ~200 ng of Cu was 
added to each 10% acrylamide gel. Cu peaks were mostly found in early sections of the gels. Cu recovery in peak 
sections was consistently less than 5%.

	 With native PAGE eliminated for the time being, SEC was another option to investigate as 
a potential further purification method. For this, a 100 mL Biogel P4 SEC column equilibrated 
with ddH2O was used. Any precipitates that formed during reconstitution of the dried sample 
to be added were removed using centrifugation. Concentrated samples added to the column 
were typically 1 mL in volume and contained about 1000 ng of Cu. Fractions of about 2 mL were 
collected up to a total eulate volume of about 120 mL and each fraction was measured for Cu and 
absorption at 220 nm as shown in Figure 2. The data show that in peak-Cu fractions, purity was 
very high given by a Cu/A220 ratio of around 330. Total Cu recovery across multiple Cu peaks 
was nearly 100%. From these results, it was determined that SEC was a better separation method 
than native PAGE and should be refined further.
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Figure 2 – Further purification using SEC: 1 mL containing ~1000 ng of Cu was added to a 100-mL Biogel P4 SEC 
column equilibrated with ddH2O. The highest and most pure peak was found at 60 mL of eluate containing more 
than 400 ng of Cu. The Cu/A220 ratio here was 330. Total Cu recovery across the three peaks was nearly 100%.

	 Hydrophilic interaction liquid chromatography (HILIC) was also used as a subsequent 
purification technique. The preliminary data showed poor Cu recovery, so the column 
was cleaned with 40 mM EDTA to remove any contaminants retained by the column. The 
first sample injected into the column was dissolved with the 60% acetonitrile in 20 mM 
tetramethylammonium phosphate buffer. The sample was 1 ml in volume, had a Cu content of 
588 ug/L. The column had a flow rate of 1 ml/min for the entire run. For the first 7 ml the 60% 
acetonitrile in the tetramethylammonium buffer was used. For the following 18 ml a gradient 
from 60 to 10 % acetonitrile in the tetramethylammonium buffer was used. For the last 5 ml of 
the run, only the 10% acetonitrile in the tetramethylammonium buffer was used. The column had 
an 80% Cu recovery, which indicated that the EDTA helped to cleanse the column, and produced 
better results. 
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Figure 3 – Effect of running dialyzed and concentrated 3k filtrate on a HILIC column; 1 ml containing 588 ng of Cu 
was added to the HILIC column and run with a 60% ACN to 10% ACN gradient in 20 mM tetramethylammonium 
phosphate buffer pH 6 after being cleaned with 40 mM EDTA. This column had an 80% Cu recovery.

	 The next column was run under similar conditions, except that the dissolving solution, and 
high acetonitrile buffer was now 65% acetonitrile in a 20 mmol tetramethylammonium phosphate 
buffer pH 6 instead of 60%. The Cu recovery for this column was only 20%, indicating that the 
60% acetonitrile might produce better recovery. 

Figure 4 – Effect of using 65% acetonitrile in the column starting buffer; 1 ml containing 1950 ng of Cu was added 
to the HILIC column and run with a 65% ACN to 10% ACN gradient in 20 mM tetramethylammonium phosphate 
buffer pH 6 after being cleaned with 40 mM EDTA. This column had a 20% Cu recovery.
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	 After collaborating with the producer of the column, it was suggested to cleanse the column 
again but this time using hexafluoro-2-propanol, to remove anything that the EDTA could not. 
The subsequent data shows the results after the column was cleaned. The starting buffer contained 
60% acetonitrile, since it had produced a better Cu recovery as shown in Figure 1. On this 
column, 400 ng of Cu were injected, and had a 38% Cu recovery.

Figure 5 – Effects of cleaning the HILIC column with hexafluoro-2-propanol; a 1 ml sample containing 400 ng of Cu 
was injected and was run with a 60% ACN to 10 % ACN gradient in 20 mM tetramethylammonium phosphate buffer 
pH 6. This column had a 38% Cu recovery.

	 The collaborator also suggested using an overall 20 mmol tetraethylammonium phosphate 
buffer pH 6 for the high acetonitrile buffer. The next column was run using this new buffer. The 
sample used had 600 ng of Cu, and the column had a 43% Cu recovery. 

Figure 6 – Effects of using an overall concentration of 20 mmol tetraethylammonium phosphate pH 6 for the buffers; 
This HILIC column also used a 60% to 10% ACN gradient, but the 60% ACN had a final concentration of 20 mM 
tetramethylammonium phosphate buffer at pH 6 and the 10% ACN used a 20 mM tetramethylammonium phosphate 
buffer pH 6. 1 ml containing 600 ng of Cu was injected into the column, and this column had a 43% Cu recovery.



50

Discussion
	 One of the major obstacles in this effort to establish an effective purification method for SCC 
in pig plasma was maintaining high Cu recovery at each step. In previous purification trials, much 
Cu was lost during the lyophilization-reconstitution stage of the process. It was hypothesized that 
presence of salts in the 3 kDa ultrafiltrate was causing SCC-Cu to precipitate out of the solution. 
Thus, dialysis was included after 3 kDa ultrafiltration to remove salts. Doing so led to Cu recovery 
values consistently above 50% for overall purification. 

	 To determine the most optimal parameters for dialysis, several trials were performed using 
varying dialysis solutions and filter tubing cutoff sizes. It was determined that using dialysis 
tubing with a cutoff size of 0.1 - 0.5 kDa yielded the highest Cu recovery and most effective 
removal of salts compared to other cutoff sizes. Additionally, ddH2O as the dialysis solution gave 
slightly better recovery and separation compared to 5mM potassium phosphate buffer pH 7 as 
seen in Table 1.

	 Presently, two methods of purification are being investigated, namely size exclusion 
chromatography (SEC) and hydrophilic interaction liquid chromatography (HILIC). Native 
polyacrylamide gel electrophoresis (native PAGE) using 10% acrylamide gels was being studied 
previously as well, but as shown in Figure 1, consistently poor Cu recovery (less than 5%) 
eliminated this as a potential separation procedure. It should be noted that during these studies, 
Cu was typically found in the early portion of the gel. This indicates that SCC-Cu migrated slowly 
and appears to have a low charge/mass ratio. 

	 Comparatively, SEC has given more promising results with average Cu/A220 ratios of about 
400 in peak-Cu fractions and Cu recovery of nearly 100% across all peak-Cu fractions. In many 
cases, 2 peaks were observed, one at around 40 mL of eluate and another at around 90 mL of 
eluate. In other cases, 3 peaks were observed, one at around 25 mL eluate, another at 50 mL eluate 
and a third at around 60 mL eluate. Inconsistency in recent results is being investigated and may 
be due to Cu accumulation within the column. Preliminary efforts to mitigate this issue include 
using 0.5 M EDTA to flush out lingering Cu from previous trials. Nevertheless, multiplicity 
in peaks suggests that SCC may be an aggregate molecule, with the most disaggregated forms 
eluting in later fractions. This is being further investigated by rerunning samples from a single 
peak-Cu fraction through the SEC column and seeing if multiple peaks form in the same manner. 
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Additionally, presence of salts appears to promote aggregation and thus, future studies will also 
include observing how the SEC elution profile changes when using phosphate buffered saline as 
the column’s solvent.

	 Previous HILIC columns were giving poor Cu recovery, and it was suspected to be because 
the column needed to be passivated to clean any residues that could still be in the column. The 
column was passivated with 40 mM EDTA to remove any metals or minerals that could still be 
in the column. At first there was a significant increase in Cu recovery (Figure 3), but these results 
did not stay consistent (Figure 4). The acetonitrile concentration was increased to test if it would 
increase Cu recovery, but only 20 % was recovered in that trial (Figure 4). The column was then 
cleansed with hexafluoro-2-propanol in hopes that any contaminants left would be removed. The 
first column run after this clean was run with a 60% acetonitrile, and it did show an increase from 
the previous run with a Cu recovery to 38% (Figure 5). A second column was run under the same 
conditions (Figure 6), to see if the data was reproducible. This column did show an increase of 
Cu recovery, 43%, but the peaks shown in the graphs were not identical. Similar to data obtained 
from SEC trials, multiple distinct Cu peaks were observed in HILIC data, further suggesting that 
SCC may be an aggregate. More studies are being conducted to investigate why the data for every 
HILIC column tends to be different, however.

	 In any case, consistently high Cu recovery and good separation using 10K ultrafiltration 
followed by 3K ultrafiltration, then dialysis and lyophilization-reconstitution indicates that this is 
an effective purification method for isolating SCC from pig plasma. SEC and HILIC, though still 
being investigated, both seem to give better results than separation by native PAGE. The purest 
samples obtained from purification efforts will be analyzed for full structure determination using 
mass spectrometry (including electrospray), EPR, and solution NMR. Elucidating SCC structure 
can reveal more about the specific function of SCC which has numerous clinical applications 
including better diagnostic tools and therapies for Cu-overload diseases.
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Abstract
	 Plutons are an important part of the magma plumbing system that feed dangerous 
volcanic eruptions, yet the mechanisms of construction and evolution through time are poorly 
understood. This is also the case for the Cretaceous Box Springs Pluton in Riverside, CA. The 
geologic map pattern of tonalite, granite, and granodiorite shows a concentric unit arrangement 
with the youngest units in the core and the oldest units on the edges. The goal was to investigate 
the structure and composition of this pluton and test the hypotheses that the concentric structure 
represents a vertical transcrustal volcanic feeder and that the magmas are petrologically related. 
	 An area of 1.3 km2 was mapped at 1:10,000 scale in the oldest marginal units on the west 
side of the Box Springs pluton northeast of UC Riverside. Three of the units were mapped: 
Kbgg, a porphyritic granodiorite and granite; Kbhg, a heterogenous porphyritic granodiorite 
and granite; and Kbhg1, a diked and layered version of Kbhg. Samples of the three units and the 
fine-grained leucogranite dikes within Kbhg1 were collected for petrography and XRF whole rock 
geochemistry.
	 Petrographic observations show that each unit has a similar relative abundance of quartz, 
K-feldspar, and plagioclase. Mafic mineral abundance varies considerably, mainly within Kbhg1 
where hornblende and biotite make up nearly 40% combined in localized schlieren layers, and 
only appear at up to 5% in the other units. Accessory minerals include muscovite, epidote, 
hematite, sphene, ilmenite, and allanite. The dikes within Kbhg1 are very felsic with only 5% 
mafics, and contain muscovite and garnet as accessory minerals. Since mineralogy is similar 
and modal abundances vary, the units might be petrologically related through fractional 
crystallization. This will be further tested with XRF geochemistry. All units have a consistent 
structure with magmatic foliations striking NW-SE and dipping toward the core of the pluton 
to the NE. The foliations dip steeper (50-65 degrees) near the center of the mapped area and 
are shallower (25-40 degrees) near the edges of the mapped area, resembling the structure of 
a lopolith. The dikes within Kbhg1 strike in the same orientation to the units but dip in a SW 
direction. Contacts between Kbhg and Kbhg1 are gradational while the contact between Kbgg and 
Kbhg is sharp. These relationships suggest that a transcrustal volcanic feeder cannot be excluded, 
but that the geometry of the magma plumbing in this part of the pluton is not a simple vertical 
cylindrical shape.
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Abstract
	 Although ancient magma plumbing systems (plutons) are commonly exposed at the surface, 
such as the Cretaceous Box Springs pluton of the Peninsular Ranges batholith, Riverside, CA, 
their emplacement and evolution through time are not well understood. Previous mapping of 
the Box Springs pluton shows concentric rock units of biotite granodiorites and biotite tonalites 
decreasing in age towards the core of the complex. The elliptical shaped kbt unit at Blue Mountain 
in the northeast of the pluton is hypothesized to represent a vertical magma feeder zone. This was 
tested by mapping the orientation and dip of the contact with adjacent units. A steep contact fits 
this interpretation, while a subhorizontal contact indicates a sill. Petrography and XRF analyses 
test whether the Box Springs pluton units are the product of one large fractionating magma body 
that traveled through the feeder zone.
	 Ten days were spent in the field mapping and collecting samples for petrography and whole-
rock geochemistry of the 2 km2 NE section of the Box Springs pluton at Blue Mountain. Mapping 
revealed three compositionally diverse units decreasing in foliation intensity and sub-solidus 
deformation moving inwards towards the summit of Blue Mountain. The oldest unit located 
to the northeast of the summit, kbft, is a biotite tonalite with a strong magmatic foliation and 
parallel enclave alignments dipping southwest 71-82°. The kbgr is the second youngest unit 
located to the southwest of the summit. Here magmatic foliations strike northwest to southeast 
parallel to the contact with the kbft and dip 80-85° to the southwest. The youngest unit, kbt, is a 
biotite tonalite showing a weak subvertical magmatic foliation that strikes northwest to southeast 
and dips 60-89° to the southwest. Petrography shows higher biotite abundances and sub-solidus 
deformation in the kbft and kbgr units compared to the kbt. Biotite-rich schlieren layers line the 
elliptical kbt contacts on the north and east sides of the unit, which dip subvertically and young 
inwards towards the summit as indicated by cross-cutting relationships of individual layers. 
Schlieren along the contact between kbgr and kbft young towards kbgr.
	 Steeply dipping contacts with schlieren around the core of the pluton confirm that kbt at Blue 
Mountain likely represents a vertical feeder for the complex. Schlieren along the contacts indicate 
flow of magma against a fully or partially solidified wall of older units allowing mafic minerals 
to accumulate. XRF data is being analyzed to determine the petrologic relationships between the 
three units. 
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Abstract: 

	 The Hector Mine earthquake (Magnitude 7.1) that occurred on 16 October 1999 within 
the eastern California shear zone, parallel to the San Andreas Fault, produced 48 km of 
surface rupture. This was the first large earthquake to have occurred along the fault strand in 
the Holocene Epoch. This is also the only fault with a surface rupture that has repeat (2000 
and 2012) Light Detection and Ranging (lidar) that not only provide an opportunity to see 
if offset measurements using lidar data are reproducible, but also help document how much 
modification offset geomorphological features experience at a decadal timescale. In this study, I 
made 43 horizontal offset measurements using DEMs generated from lidar data collected along 
the maximum slip zone section Hector Mine earthquake surface rupture in 2012. The offset 
measurement values in the maximum slip zone area ranged from .5 +/- 0.1 m (CT-181) to 7.5 +/- 
0.4 m (CT-162) with evidence of rapid changes in short distances. Comparison of measurements 
made using the 2000-lidar data and the 2012-lidar data shows that measuremend discrepancies 
(11 out of 43) are exclusively due to the subtlety of the geomorphological feature that was 
identified as displaced and the subjective determination of matching features between the 
geologists. My analyses also suggest that that no significant erosion or deposition has occurred 
in the maximum slip zone of the Hector Mine earthquake surface rupture in the 12 years the two 
lidar datasets were collected.  

Introduction: 

	 Earthquakes pose a severe hazard to people living in areas that are prone to have high risk 
of seismic ruptures and activity. Therefore, it is crucial that the kinematics and dynamics of 
earthquakes are better understood. Seismic and satellite instruments are commonly used to 
detect and characterize current seismic activity and provide abundant data for analyses, but 
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they have not been around long enough to record data that span multiple earthquake cycles. 
Paleoseismology aims to fill this gap by providing information about the age and magnitudes of 
past surface rupturing earthquakes. Measurements of surface displacements are one of the most 
widely used pieces of data collected by paleoseismologists to determine the magnitude of past 
earthquakes (e.g., Wallace, 1968; Sieh 1978; Hubert-Ferrari et al., 2002; Zielke et al., 2020).
 

Offset ephemeral or persistent stream channels along with abandoned terrace risers are the 
most commonly used geomorphic markers that are surveyed manually for making displacement 
measurements (e.g., Gold et al., 2009; Lienkaemper, 2001; Salisbury et al., 2012; Sieh 1978; 
Wallace, 1969; Woeard et al., 2002). Geologists typically identify the offset feature in the 
field, trace the offset marker on either side of the fault, and measure the distance between the 
projections of the offset markers on to the fault trace. Multiple measurements are made using 
different markers that are associated with the same offset feature (e.g., channel thalweg and 
two other margins). In the last two decades, georeferenced high-resolution digital topographic 
data, derived from airborne light detection and ranging (lidar) instruments, has been utilized 
in documenting and measuring offsets of past earthquakes (e.g., Arrowsmith & Zielke, 2009; 
Chen et al., 2015; Frankel et al., 2007; Hudnut et al., 2002; Zielke et al., 2010). LadiCaoz (Zielke 
& Arrowsmith, 2012) and 3D_Fault_Offsets (Stewart et al., 2017) are the two main software 
packages that are utilized to make these offset measurements using lidar data. These offset 
measurements are then used to estimate rupture lengths and magnitudes of the past earthquakes. 
However, in nearly all the cases, these geomorphological offsets are at least a century, sometimes 
several centuries old (e.g., >100 years for the northern San Andreas Fault and >150 years for the 
south-central San Andreas Fault). Do lidar-derived measurement datasets have adequate spatial 
density to represent the slip distribution along active faults? How well do geomorphological 
offset features get preserved to represent old displacements? While Chen et al. (2015) showed 
that measurement density offset geomorphic features identified on lidar datasets can, if 
conditions are right, can at least match and even be higher than field collected data. However, 
to this date, there has not been a study investigating possible uncertainties associated with 
geomorphic modifications these offset markers might have experienced since their formation 
and displacement. Some outstanding that remain to be answered are the following: Is there 
any evidence for erosional or depositional modification of these geomorphic features that 
are commonly used in offset measurements? How well do these offset measurements made 
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on geomorphic features that have been potentially modified for at least a century represent 
displacements that occurred during previous earthquakes? Do the uncertainties reported 
with offset measurements large enough that they include uncertainties associated with such 
post-earthquake modification, or are they consistently less and require an alternative method 
of measurement? Since most of the active faults within the San Andreas Fault system and 
elsewhere go through Quaternary-aged sediments, the effect of erosion and deposition to offset 
measurements made along strike-slip faults is of utmost importance to evaluate the relevance of 
the offset measurements that are now made routinely using lidar data.

The Hector Mine rupture (Figure 1) provides a unique opportunity to evaluate effects of erosion 
and deposition on surface displacement measurements along strike slip faults in arid settings 
because it is the only historic fault rupture where slip data has been collected on the same features 
using different data sets and over a period of twelve years. Field measurements were made 
immediately after the earthquake, and lidar was initially collected six months later (Hudnut et al., 
2002).  Lidar-based offset measurements were then made using this dataset and later published 
(Chen et al., 2015).  In May 2012 a repeat lidar dataset was collected (NCALM, 2012).  New field 
measurements were then made in 2012-14 (Akciz personal communication). In the context of 
these different datasets, several questions motivated this thesis: How well do different types of 
measurements made by different researchers at different times using different datasets agree?  
What data or technique issues, or natural processes, are be responsible for any differences? Is 
there any evidence of significant modification of geomorphological offset markers in the arid 
setting of the Hector Mine earthquake surface rupture in 12 years (the time in between the 
collection of two lidar datasets)? I examine these issues by comparing the multiple datasets of 
field and lidar-based offset measurements. 

Geologic Background

In 1999, the 7.1 magnitude Hector Mine earthquake caused a north trending surface rupture of 
48 km along the eastern California shear zone (Figure 1; Treiman, 2002). The Lavic Lake fault at 
the northern portion of the fault and the Bullion Fault to the south make up the two strands of 
the fault associated with the Hector Mine earthquake (Treiman et al., 2002). These two strands 
were mapped previously but showed no evidence of activity in the Holocene Epoch (Treiman 
et al., 2002). Therefore, the displacement observed along the fault strand are thought to have 
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occurred during the 1999 seismic event (Treiman et al., 2002). Based on field measurements, 
average horizontal displacement along the entire rupture was determined to be 1.5 meters, with 
the maximum being 5.2 meters (Treiman et al., 2002).

Figure 1: Overview of the surface rupture (colored lines showing the Lavic Lake, East 
and West Bullion faults) caused by the Hector Mine Earthquake shown on a shaded relief 
map derived from Shuttle Radar Topography Mission data (modified after Chen et al., 
2015). White star shows the epicenter location. White lines represent the adjacent fault 
zone system that did not rupture during this earthquake. The extent of the study area, the 
Maximum Slip Zone (MSZ), is also shown. . The inset map indicates the context of the 
Hector Mine rupture within the northwest-striking dextral faults of the eastern California 
shear zone (ECSZ, gray band on inset map of California)
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In April 2000, an airborne laser scanning survey was performed, creating the first high resolution 
lidar coverage of topography along the entire extent of a major earthquake surface rupture 
(Hudnut et al., 2002).  Chen et al. (2015) used this ALS dataset along with LaDiCaoz, a Matlab-
based cross-correlation tool for measuring offset topographic features from digital elevation 
models (Zielke and Arrowsmith, 2012), to measure over 250 individual offsets along the surface 
rupture. The analyses of lidar data from 2000 indicated that the maximum slip to be 6.6 meters, 
with a displacement of 1.72 meters being the average (Chen et al., 2015). This lidar analyses 
study also showed that while the lidar data can potentially increase the spatial density of offset 
measurements, there was more uncertainty in the measurements in the lidar sets than in the field 
work (Chen et al., 2015). Both of the previous studies are generally in good agreement regarding 
the amount of maximum horizontal offset (5-6 m dextral horizontal) and the location of a 
maximum slip zone (MSZ, Figure 1) within the Bullion Mountains section of the surface rupture 
where dextral horizontal offsets exceed four meters (e.g. Fialko et al. 2001; Peltzer et al., 2001; 
Treiman et al., 2002; Ayoub et al., 2009; Chen et al., 2015). 

Methods 

The lidar data analyzed in this study was collected by an airborne laser scanner system. As the 
aircraft flies over the fault, the scanners emit laser impulses that travel to the surface, are reflected 
back to the scanner, and are recorded. The onboard equipment measures how long the light 
was traveling to the ground and back and interprets the topography of the ground using data 
such as the laser travel times, the speed and location of the aircraft and the precise location and 
orientation information of the scanner unit with respect to the ground. This process is similar to 
SONAR and RADAR systems in concept. These point data is then converted to a digital elevation 
model (DEM) through additional processing after the completion of the data collection phase. All 
the DEMs used in the analyses described below were downloaded from opentography.org (last 
access January 2021). 
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Figure 2. Examples of different stages of the LadiCaoz analyses shown on a well-developed 
channel in the Carrizo Plain (from Zielke and Arrowsmith, 2012). (A) Hill shade plot of the 
study area with NE illumination. Fault trace (cyan line) and topographic profile lines (red and 
blue), and channel trends (in yellow) are also shown. (B) A graphic representation of how well the 
upstream and downstream topographic profiles match and the slip magnitude that will maintain 
that goodness-of-fit is also shown as a probability density function. (C) Hill shade plot of the 
study area with NW illumination. Identification of subtle geomorphic features such as the fault 
trace and the small stream channel is sometimes difficult and the ability to look at multiple base 
maps help gain sufficient understanding of each site prior to identifying the location of faults 
and offset geomorphological features. Quick generation of those different illumination angles is 
a feature of the provided MATLAB tools. (D), (E), and (F) Back-slipped topography of the offset 
features using different slip amounts to determine the minimum-, optimal- and maximum-
horizontal slip amounts.
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The DEMs are assessed and interpreted using LaDiCaoz (lateral displacement calculator) 
software, which is a MATLAB cross-correlation code with a graphic user interface (GUI) 
(Zielke and Arrowsmith, 2012). Offsets are measured using the MATLAB GUI after certain 
basic parameters, including the fault location and trends of the thalwegs both downstream and 
upstream of the fault are entered manually. Additional steps were taken in order to complete 
the displacement measurements. Once the channel cross-sections were drawn, LadiCaoz 
automatically reconstructed the displaced channel profiles to determine the optimal displacement 
value and provide a goodness of fit value for how well the profiles matched as they were 
reconstructed. In the following steps, the DEM data was back-slipped to visually determine the 
minimum and maximum possible offset magnitudes for each offset. (Figure 2)

Results: 

For this study, a total of 43 horizontal displacement measurements were made along 
approximately 4.5 km section of the fault (Figures 1 and 3). Locations of the offset features were 
obtained either from the Chen et al. (2015) investigation or from the field investigation notes 
collected in 2012-2014 (Akciz, personal communication). No new offset markers were identified 
using the 2012 lidar data. In comparison to the 15 measurements made by the field teams 
immediately after the earthquake (Treiman et al., 2002), this dataset contains the greatest number 
of offset measurements made to date along this section of the Hector Mine earthquake surface 
rupture. My study was able to reproduce the results of Chen et al. (2015) and agree with one of 
their conclusions which stated that measurements made on lidar-data alone can be as spatially 
dense or better than field data alone if geomorphological offset markers offset by the fault rupture 
are also abundant. In other words, the controlling factor is not the quality of the lidar data, but the 
existence of a linear geomorphological feature, such as a stream channel, across the fault prior to 
the rupture. 

The offset measurement values in the maximum slip zone area ranged from .5 +/- 0.1 m (CT-181) 
to 7.5 +/- 0.4 m (CT-162) with evidence of rapid changes in short distances as evidenced along 
the surface ruptures of other earthquakes (e.g. McGill and Rubin, 1999; Rockwell et al., 2002; 
Treiman et al., 2002). The spatial distribution of the horizontal offset measurements is denser in 
the northern portion (the first 2 km) of the fault then the southern 2.5 km of the studied section 
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of the fault (Figure 3). The northern section has a total of 26 measurements, while the southern 
section has a total of 17. Offset measurements made using only the 2012 lidar data have no major 
(>300 m) spatial gaps in the fault segment studied.

The distribution of the horizontal slip within the MSZ is asymmetric with a cluster of >6 m slip 
within northwesternmost 750 meter of the study area (Figure 3). The northern portion (0 – 2 km) 
has measurements from as low as 2m, and as high at 7.5 +/- 0.4 m (CT-162). The average of these 
horizontal slip values being 4.1 +/- 0.61 m. While in the south (2 – 4.5 km), the measurements 
cluster around 2 m, with the highest being 6 +/- 1m, and the average of these values is 2.9 +/- 0.54 
m of displacement. The average horizontal displacement along this 4.5 km high slip segment is 
calculated to be 3.65 +/- 0.58 m. 

Figure 3. Distribution of horizontal offsets and measurement uncertainties plotted against 
distance along the surface rupture within the maximum slip zone. 
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Discussion 

Comparison of measurements made using the 2000-lidar data (Chen et al., 2015) and the 
2012-lidar data (this study) shows that 32 of the 43 measurements are similar to each other 
within uncertainties (Fig. 4). The similarity of the magnitudes of the measurements made by 
two different geologists using two different topographic datasets suggest that majority of the 
geomorphological features within the study area were well-preserved, easily identified, and had 
relatively simple geometries that resulted in offset measurements of similar magnitude. 

The discrepancies in all other eleven locations are due to the subtlety of the geomorphological 
feature that was identified as displaced which resulted in different back-slipping solutions and 
the alternative interpretations of the projection lines by different geologists. In both datasets, 
these were all labeled as low-quality measurements because of these limitations. Two of the 40 
measurement locations (sites CT169 and CT170) were investigated further as they are the only 
channels that are cut into unconsolidated alluvium deposits that were susceptible to erosion or 
deposition. In comparing the locations of the channel margins used for the offset measurements 
I conclude that no quantifiable morphological modifications occurred at these locations between 
2000 and 2012. In such an arid-climate setting, this conclusion is not unexpected, however, to this 
date, no such repeat measurements of horizontal slip have been made to support this hypothesis. 
12 years are unquestionably too short of a time period to determine how much do offset 
measurements made using lidar data on faults that last ruptured >100 years ago get modified. 
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Figure 4. Comparison plot of the horizontal offset measurements made using the 2000- and 
2012-lidar data. The solid green line is the 1:1 ratio line that was used to identify the 11 locations 
(black circles) where magnitudes of offset measurements did not match within their uncertainties.

Conclusions

I made 43 horizontal offset measurements using DEMs generated from lidar data collected along 
the maximum slip zone section Hector Mine earthquake surface rupture in 2012. The offset 
measurement values in the maximum slip zone area ranged from .5 +/- 0.1 m (CT-181) to 7.5 +/- 
0.4 m (CT-162) with evidence of rapid changes in short distances. Comparison of measurements 
made using the 2000-lidar data (Chen et al., 2015) and the 2012-lidar data shows that 32 of the 
43 measurements are similar to each other within uncertainties. The discrepancies in all other 
eleven locations are due to the subtlety of the geomorphological feature that was identified as 
displaced. My analyses also suggest that that no significant erosion or deposition has occurred in 
the maximum slip zone of the Hector Mine earthquake surface rupture in the 12 years the two 
lidar datasets were collected. 
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Abstract
	 Spatial visualization is crucial to success in the geosciences (Alles and Riggs 2011; Gobert 
2005; Titus and Horsman 2009). Students with the spatial abilities necessary to succeed in early 
geoscience coursework are more likely to pursue the geosciences further. Those that are lacking in 
their spatial abilities are more likely to struggle, resulting in a significant proportion of students 
who disregard or abandon the geosciences. Previous studies have demonstrated that spatial 
abilities are malleable, and can be trained efficiently and inexpensively, yet widespread spatial 
training is uncommon (National Research Council 2006; Gold et al., 2018; Hespanha et al., 2009). 

	 This research involved testing the use of 3D-printed geologic block models as tools for 
fostering spatial abilities in conjunction with an introductory-level geologic structures exercise 
in physical geology lab courses at California State University, Fullerton. In particular, we 
sought to answer the following two research questions - (i) Does teaching geologic structures 
with 3D-printed block models impact students’ spatial abilities? (ii) Do student demographics 
such as gender, ethnicity, and academic background affect the impact of block models? It was 
hypothesized that the block models used to teach geologic structures would have some positive 
impact on students’ spatial visualization abilities. It was also hypothesized that historically 
underrepresented and underserved students would receive the most significant benefits from 
the models, putting them on a more level playing field with their peers who have had more 
opportunity to develop their spatial abilities. This hypothesis was based on previously conducted 
research (Levine et al., 2005), which found that underrepresented students tend to have poorer 
spatial visualization abilities.

	 Three spatial visualization abilities were targeted during this study – spatial rotation, spatial 
manipulation, and visual penetrative ability. Though there are many spatial abilities, these three 
were deemed to be especially important to the geosciences (Titus and Horsman 2009). Spatial 
rotation – the ability to mentally rotate or reorient objects – is required to understand how 
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rocks are reoriented over time, as well as higher-level concepts such as pebble imbrications and 
the preferential reorientation of minerals in magma chambers (Shepard and Metzler 1970). 
Spatial manipulation – the ability to mentally reconfigure or distort an object – is necessary to 
understanding deformational processes such as folding and shear (Ekstrom et al., 1970). Lastly, 
visual penetration – the ability to mentally pierce through an object and envision its internal form 
– is frequently used when trying to interpret three-dimensional subsurface information from 
two-dimensional data presented on the Earth’s surface (Kali and Orion 1996). 

	 Pre- and post-lab spatial visualization surveys and a demographic background questionnaire 
were used to collect data from 593 introductory geology laboratory students who completed a 
geologic structures lab as part of their coursework. Data was processed in R statistical software, 
and missing data were imputed using the MissForest package. One-way MANOVA were used 
to determine the main effect of block model access on students’ spatial visualization survey 
score differentials. Two-way MANOVA were used to determine the interaction effect of student 
demographics on block model impact.

	 The data collected indicate that access to the 3D-printed block models – as they were 
incorporated during this study – hindered the development of spatial rotation, while having 
insignificant effects on the development of spatial manipulation or visual penetrative abilities. 
This lack of efficacy is attributed to the means by which the blocks were incorporated, as well 
as the duration of the intervention. Additional manipulative and penetrative operations that 
incorporated the blocks were not required, and rotational operations were discouraged as 
students realized they could use the blocks to pattern-match when solving rotation-based 
problems. Furthermore, the students who participated in this study had approximately three 
hours to practice their spatial visualization abilities – previous studies have shown that students 
need longer-term, repeated practice if they are to develop their abilities (Duesbury and O’Neill, 
1996; Ormand et al., 2014; Titus and Horsman, 2009).

	 These data also indicate that the block models had equitable results across student 
demographics. 3D-printed block models do not depend on any sort of cultural context or 
academic background, so who our students were did not change their experiences with the 
models. Though further research is required to determine the appropriate application of the block 
models as tools for fostering spatial visualization abilities, we take pride in knowing that our 
resources are equitable to students of all cultural and academic backgrounds.
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Abstract

	 As the Mendocino Triple Junction migrated north past the latitude of northern Owens Valley (OV) 

at approximately 5 Ma, the plate boundary progressed from a subduction zone to a transform fault. One 

hypothesis is that the composition of rising basalt magmas (e.g. Ce, Y, Zr, and Ba) altered as the plate 

boundary changed. A second hypothesis is that delamination of the lithospheric root of the Sierra Nevada 

batholith around 4 Ma also altered the composition of basalt magmas (i.e., higher K2O).

	 Basalts in northern OV have 40Ar/39Ar ages of 3 Ma and 11 Ma, which precede and follow these 

tectonic events. Basalt flows in the White Mountains (WM) to the east are dated to 11.5 Ma. Relations 

between the OV and WM flows and magma are unclear. We make three hypotheses. If the Sierra 

delamination raised K2O in magma, then the 3 Ma basalts will have higher K2O content. If the Ce, Y, 

Zr, and Ba concentrations change, then the 3 Ma basalts reflect plate boundary and magma pathway 

changes. Also, if the OV and WM basalts are geochemically similar, then they may represent the same 

flow or magmatic source. To test these hypotheses, one 3 Ma and three 11 Ma basalts in northern OV 

were sampled and field observations were made about the geologic nature of the outcrops. Samples 

were analyzed by x-ray fluorescence. 	 Our findings do not support the hypothesis that the OV and 

WM basalts represent the same flow or magmatic source. The samples are geochemically dissimilar: 11 Ma 

MZP-OV-2 is a trachyandesite (59.50 wt% SiO2; 3.51 wt% Na2O; 3.35 wt% K2O) and 11 Ma MZP-OV-3 

is a mantle-sourced basalt (0.32 Zr/Ba; 3.44 Ce/Y; 1.64 wt% K2O). MZP-OV-4 is an 11 Ma lithosphere-

sourced basalt (0.19 Zr/Ba; 4.36 Ce/Y; 2.72 wt% K2O) geochemically similar to the WM basalts; however, 

field observations suggest MZP-OV-4 is a small vent and not part of a larger flow. Our findings also do not 

support the hypothesis that the 3 Ma basalts in northern OV are mantle-sourced. The 3 Ma “basalt”, MZP-

OV-1, is a basaltic trachyandesite (51.42 wt% SiO2; 2.43 wt% Na2O; 3.68 wt% K2O) showing lithosphere 

interaction (0.15 Zr/Ba; 2.35 Ce/Y). The 3 Ma basaltic trachyandesite and 11 Ma trachyandesite had 

similar K2O concentrations, thus we were unable to discern the influence of Sierra delamination on 

magma composition in this area. These relations may instead be linked to crustal assimilation.
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Abstract.

Traditional mancala has been played for millennia and requires a lot of problem-solving skills and 
strategies. We wanted to see how the game mancala would change if the twelve pits were reduced 
to six pits with only one gemstone instead of four gemstones in each pit, along with mirrored 
moves and no capturing allowed. First, we show that there are a total of sixteen different possible 
games. Then, we show that every game results in a tie of three gemstones each for both Players A 
and B. We concluded that the order of who plays first does not make a difference in the end. Our 
version of mancala did not require many strategies and critical thinking since the second player’s 
move would mirror the first player’s move.

1.	 Introduction

1.1.	 History of Mancala. Mancala is a board game that has been played for thousands of 
years, dating back to the sixth century in Africa [2]. The term mancala comes “from the 
Arabic word naqala”, which translates to “to move” [3, pg. 1]. There are many different 
ways of playing this board game, some versions involve two, three, or even four players. 
Some mancala games have a different amount of rows, pits, and/or gemstones. Overall, 
the basics and goals of mancala are the same. In our paper, we will cover what the tradi-
tional mancala consists of along with the altered mancala game we created.

1.2.	Traditional Mancala. The most popular version of mancala consists of two players, one 
mancala board, forty-eight gemstones, twelve total pits, and two man- calas. The wooden 
game board is long and is placed between the two players vertically. It is made up of two 
rows with six pits each, and mancalas on the oppo- site ends of the board. Players A and 
B have the six pits straight in front of them on their right-hand side. In each of the twelve 
total pits, four gemstones are placed. Refer to Figure 1 to see what the traditional mancala 
board setup looks like.

Now that we have explained the equipment and setup of the traditional man- 
cala, let us explain the objective and gameplay of it. The objective of mancala 
is to find out which of the two players can collect the most gemstones into their 
mancala. Then, we have the gameplay, which starts with Player A picking up the 
four gemstones from any one of the pits on their side. Player A will then place 
one gemstone at a time into their pits in a counterclockwise manner until the 
gemstones run out [3]. If Player A encounters their mancala, a gemstone is placed 
there as well. If Player A’s last gemstone is placed in their mancala, then Player 
A receives an extra turn.
On the other hand, if there are extra gemstones even after placing a gemstone in 
Player A’s mancala, Player A can continue to place gemstones onto Player B’s 
pits [3]. Yet, if Player A’s extra gemstones encounter Player B’s mancala, then that 
mancala is skipped over. If Player A’s last gemstone is placed in an empty pit on 
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its own side, then Player A will take this gemstone along with Player B’s gemstones 
across from the empty pit that it was placed in [3]. These gemstones get placed in 
Player A’s mancala. This process is repeated for Player B. The players continue 
taking turns until the game is completed.

There are specific terms that can be used to describe a few of the processes that 
were explained above. First, the game mancala revolves around the idea of picking 
up the gemstones and placing them into different pits. Another term that can be 
used for placing the gemstones into the pits is called “sowing the seeds” [4]. The 
seeds are the gemstones and the action of placing them into the pits is called 
sowing. This is similar to when farmers sow seeds into the ground. Secondly, 
above we have mentioned that if the player’s last gemstone is placed into their 
mancala, that player receives an extra turn. Another term to describe this process 
of gaining an extra turn is “multiple laps” or “relay sowing” [5]. Multiple laps 
and relay sowing are not universal features in the game of mancala, but they are 
frequently used throughout the world [5]. Lastly, we stated earlier that if a player’s 
last gemstone is placed in an empty pit on its own side, then that player will take 
this gemstone along with the opposing player’s gemstones across from the empty 
pit that it was placed in. This process is called “capturing gemstones.” Not all 
cultures use this technique, but it is also very commonly used.

The game is completed when all six pits on one side are emptied. To 
decide who the winner of the game is, each player will then count the number of 
gemstones that were placed in their mancalas. Player A will count the gemstones 
in mancala A and Player B will count the gemstones in mancala B. The player 
with the most gemstones in their mancala wins the game.

1.3.	Modified Mancala. We wanted to create our own version of the game man- cala, where 
there are a total of six pits instead of twelve pits. So, there would be two rows of three 
pits instead of six pits. In each of the six pits, there will only be one gemstone instead 
of four. In addition, the player’s moves are mirrored and no capturing is allowed. The 
overall basics of mancala remain the same though. How would the game mancala change 
if the twelve pits were reduced to six pits with only one gemstone instead of four gemstones 
in each pit, along with mirrored moves and no capturing allowed? Refer to Figure 2 to see 
what the modified mancala board setup looks like.

Our altered version of mancala is simpler than the traditional mancala game. 
The reason why this version of mancala is worth researching is because it is a 
kid- friendly version where the game would require fewer materials, time, 
and confusion. Although it is a kid-friendly game, it is still not meant for 
people under the age of eight [1]. This mancala version would be great for a kid 
who would want to play this game at school or a park. They can easily gather 
six rocks in place of the gemstones. Gathering six rocks is much easier than 
gathering forty-eight rocks. Then, using chalk, the kids can draw the six pits and 
two mancalas on the floor. That way, this game can be played anytime even if one 
does not have the game board or gemstones.
Our altered version of mancala has mirrored moves, meaning that whatever 
Player A chooses to do, Player B will do the same but on their side as if there is a 
mirror. From mirroring, the other player will not be confused as to what the next 
move they should make since they have no choice but to follow Player A’s move. 
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This makes the game fair to play because the moves are the same. Even if we were 
to take away the mirroring in the modified version, the rules are still simple to 
follow along.

To conduct our research, we met up and played over a hundred games 
of mancala together. We used the physical traditional mancala board but 
implemented our own rules. Not much research has been done on the alterations 
of mancala and what patterns may arise. After collecting numerous amounts 
of data, we came up with some patterns and conclusions. We expand on these 
findings in the Results.

Figure 1. Traditional Mancala Board

Figure 2. Modified Mancala Board
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2.	Results

We reduced the number of pits to six and gemstones to one while keeping 
mancala A and mancala B on each side (see Figure 1). Our rules are the same 
except we excluded capturing, and we are mirroring Player A’s turns for Player 
B’s turn. We wanted to create a new version, so that it would be simple and quick 
to play. We inputted our results from playing multiple games of our version 
into three different
tree diagrams grouping them with three rounds consisting of pits A4, A5, and A6. 
There are three different pits to choose from and then from there, we had multiple 
games when choosing from within the three pits. This includes having different 
routes from a given turn.

Figure 3. Round 1 Tree Diagram
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Game 1 Example. An example of how to read our tree diagrams from Figures 3-6, is by 
first looking at Figure 3. Each branch of the tree diagram is considered one game. The 
arrows represent an extra turn after getting a gemstone into the mancala. Next, we 
color-coded whenever Players A and B got a gemstone into the mancala. Player A is 
blue while Player B is green.

According to the rules, to start the game we had Player A go counterclockwise 
first for each game, then Player B mirrored Player A’s moves. The first game 
consisted of starting with pit A6. The reason why we started with pit A6 is because 
it is closer to the mancala and starting with that pit would end up inside the 
mancala on our first turn. From the first turn, since pit A6’s gemstone went into 
the mancala they get an extra turn. Rather than mirroring Player B right after it 
goes into the mancala, we continue just as the rules say with Player A’s turn until 
they end their turn. Each box is considered one turn.

Figure 4. Round 2 Tree Diagram
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So, an example of one game would be (see Figure 3) when we pick up the gemstone 
from pit A6, this would automatically end the turn resulting in it being inside a 
box. Since the gemstone ends up in the mancala, we colored A6 blue at the top 
indicating that the first turn resulted in mancala. That was Player A’s first turn and 
now we get an extra turn. From here we see that we have two different routes 
to choose from, pit A4 and pit A5. So, we chose pit A4, which ended the turn, 
and that is why it is in its own box. Now, it is finally Player B’s turn to mirror 
Player A’s move. Player B picks up the gemstones from pit B3 which goes into 
the mancala, so we colored it green in our figure, ending up in an extra turn so we 
added the arrow. The next turn for Player B was to pick up the gemstones from pit 
B1, which resulted at the end of Player B’s turn so we need a new box for Player 
A’s next turn. Player A picks up the gemstones from pit A5 resulting in it being 
in the mancala where we colored it blue getting an extra turn. Since there is only 
one gemstone in pit A6, Player A picks that up and it goes into the mancala. Now 
we automatically mirror Player B because there are no more gemstones on Player 
A’s side. So, Player B picks up the gemstone in pit B2 resulting in an extra turn. 
Leading to picking up the gemstone in pit B3 ending inside the mancala. This 
ends the first game and so we are tied 3:3 gemstones in each mancala.

Figure 5. Round 3 Tree Diagram
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1.1.	 Game 2 Example. Another example of a game (see Figure 5) is when Player A first picks 
up the gemstone in pit A4. This ends their turn since it does not go into the mancala. 
Now we mirror Player A’s move for Player B’s turn. Player B picks up the gemstone 
in pit B1 ending their turn. Now we have two different routes either Player A can choose 
to start with pit A6 or pit A5. Let us choose pit A6 first. The gemstone goes into the 
mancala resulting in an extra turn. Player A picks up the two gemstones in pit A5 which 
goes into the mancala, resulting in an extra turn. So Player A’s only option is to pick up 
the gemstone in pit A6, ending the turn. Player B then mirrors everything from Player A 
by picking up the gemstone in pit B3 into the mancala. Then, picking up the gemstone in 
pit B2 into the mancala again and lastly picking up the gemstone in pit B3 resulting at the 
end of Player B’s turn. It is a tie once again.

As we were playing each round, finding all the possible different routes within 
the games, we had a total of sixteen games. From these games, both Players A and 
B were tied with 3:3 gemstones in each mancala. Even if we were to switch turns of 
which player went first, the results would be the same. Through this, we see that 
no computer can have power over a human being when playing this game, since 
the outcome always resulted in a tie. Our altered mancala did not require many 
strategies and critical thinking since we are mirroring the player’s moves.
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3.	Conclusion

The traditional mancala game has twelve pits with four gemstones in each pit. 
The way we approached the traditional mancala game was first asking ourselves 
how can we change the game to make it a kid-friendly version where the game 
would require fewer materials, time, and confusion. We wanted to see how the 
game mancala would change if the twelve pits were reduced to six pits with 
only one gemstone instead of four gemstones in each pit, along with mirrored 
moves and no capturing allowed.

The way we gathered our data was first separating the games into three 
different rounds that start with the pits, A4, A5, and A6. Although you may think 
that Player A has an advantage since they go first in each game, the results would 
be the same since our game is mirrored. We would still end up with a 3:3 tie. By 
playing all the different possible routes in each round, we had a total of sixteen 
games, all of which ended in a 3:3 tie. However, Player A likely has more fun 
because they are solely controlling the gameplay.

Not much research has been done on mancala especially with the idea of 
mirroring and ending with a tie. For further research, we would like to know 
whether there are other versions in which the final result of the game ends in a 
tie. For ex- ample, would we result in a tie if we used the full traditional board 
with our same alterations? We also would like to further discover whether the 
final score would still be a tie if we used a four-player mancala board with 
our alterations. If the traditional mancala game has mirrored turns with no 
capturing, would the end also result in a tie? Overall, we are interested in what 
caused the ending tie result. Un- der what circumstances did the tie occur? It could 
be the change in gemstones, the change in the number of pits, no capturing mode, 
and/or the idea of mirroring. As you can see, we are curious about many things and 
about what would happen if we kept altering the traditional mancala game. Not 
many people have explored these topics and made research, and we believe it is 
worth looking into. Data can easily be gathered by playing many rounds over and 
over again. Computer simulations could greatly increase sample size and provide 
more accurate results, as well as a method for studying alternations of the game 
more quickly. Greater correlations, connections, and conclusions could be made 
if more research was done.
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Abstract

The traditional version of peg solitaire challenges the player to remove all but one of the pegs 
from a board. We consider how this task may change in difficulty if the game board is of different 
graphs, such as the cyclical or windmill variants. The vertices act as containers for the pegs that 
allows peg movement provided that the vertices connect via edges. Additionally, the set of natural 
numbers differentiate peg colors to create and play various versions of these games. By developing 
a computer program, we determine that the cyclical and windmill graphs are solvable, i.e., there 
is a strategy to win the game based on peg placement on the graph. Finally, we consider the 
possibility that peg placement is irrelevant to solve these graphs when specific sizes and peg colors 
are selected to play the game.
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Introduction
In March of 2020, the World Health Organization declared the novel coronavirus or COVID-19, 
a global pandemic. Currently, over 100 million cases and over 2 million deaths worldwide have 
been reported and these figures continue to grow (see World Health Organization’s COVID-19 
Dashboard.) While there is a significant research associated with building predictive models for 
the number of infected cases, mortality, and hospitalization, the literature on models excavating 
the effects of mobility among populations, and their relationship with economic status of their 
communities is surprisingly scarce. It is with the intention of filling that void that we have 
attempted to take into account those predictors in our statistical modeling approach. 

Purpose
In this work, we aim to construct a series of straightforward yet robust statistical and machine 
learning methods to understand the effect of economic disparities in conjunction with the 
mobility among selected counties in Southern California, on the nuances and patterns of 
variation of the reported COVID-19 infection rates. Broadly, our working hypothesis is that 
communities that struggle financially, witnessed a significantly higher rates of infection in certain 
time periods, and one way to tease that effect out is to look at the intensity of the mobility in 
the residential and business areas in those communities. We mine and collate varied sources 
and volumes of data for building a data repository for our statistical modeling approaches. This 
enables us to subsequently examine, and eventually select, a series of robust models for predicting 
COVID-19 cases through the economic status and mobility of the communities of interest.

Literature Review 
According to the journal Nature, about 4% of the world’s research output was devoted to corona 
virus in 2020 which translates to thousands of published materials and preprints, peer-reviewed 
or otherwise (Else, 2020). Consequently, a cloud of articles on the analytics of the COVID-19 
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data appeared in a variety of biological, mathematical, statistical, and computational journals, 
among others. The most frequent theme in all of those is models for prediction of the diagnosis, 
infection, mortality, and hospitalization rates (Zaobi, 2021; Shinde et al., 2020; Sujath, 2020; Liu 
et al., 2020; Tsallis and Tirnakli, 2020; He et al., 2020; Zeroual 2020). Nevertheless, there is a 
significantly limited published work, so far, on the statistical or mathematical models for studying 
the dynamics of COVID-19 fluctuations when viewed through the prism of the economic status 
of their communities. Since economic disparity in the U.S. often correlates with racial disparity, 
there is an urgent need to tackle the issue, and thereby fill that void in the literature (McLaren, 
2020; Tomaskovic-Devey, 2020; Yechezkel 2020). In this work, we draw from the rich and 
extensive literature on the statistical modeling for the time-series regression, when the response 
variable is the number of incidents or random occurrences, and the predictors of the model are 
time dependent as well (for a comprehensive review of the literature, see the references cited in 
Kedem and Fokianos, 2002). 

Data Sources and Data Wrangling

Data Sources: Google, Apple, and USA Facts
Prior to building models, there needs to be a data repository that weaves together the multiple 
sources of data, namely information regarding mobility in the residential and business areas, 
number of infected cases and mortality rate associated with each community, and its socio-
economic data. These data sources are scattered across the web and are of varying formats and 
modalities.
We began our work by extracting publicly available mobility data from two sources (Google and 
Apple mobility data dashboards), as well as the infection and mortality data from USA FACTS, 
a public service data dashboard, pulling reliable information across multi engines such as the 
Centers for Disease Control and Kaiser Permanente.
Information from Google were extracted from one of their side-repositories, titled Community 
Mobility Reports (CMR) which has been available to the public, since early January 2020. The site 
facilitates importing data by location, at the county level, and is intended to help remediate the 
impact of COVID-19 in concert with the changes in Federal and State policies, public awareness, 
and other evolving dimensions affecting the spread of the disease at the macro level. Therefore, 
the numerical reports acquired from this resource, tabulate the movement trends over time, 
and by geographic regions. There are six categories within the CMR of places, namely Retail 
and Recreation (restaurants and shopping centers), Grocery and pharmacy (farmers markets 
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and drug stores), Parks (national and public), Transit Stations (subways and buses), Workplaces, 
and Residential data. Google collects this information in an aggregated fashion, followed by 
anonymizing it, to uphold the privacy of its mobile users. A multi-dimensional data frame is 
then structured through the location history of the users’ cellphone and other mobile apps. The 
information is refined through tracing the spatiotemporal position of the users, and according to 
their interaction with at least one of the six above listed categories. Each category has a different 
metric for a certain day of the week, and in contrast to a baseline which represents a normal value 
for that day of the week. More precisely, the baseline value is taken as the median of the data from 
the 5-week period during January 3 to February 6, 2020, to reflect a sense of “normalcy” prior 
the widespread of the virus. Table 1 provides an example of the type of data that can be accessed 
from Google’s CMR repository. As shown in there, for each particular day since January 2020, 
one can acquire the percentage of changes, whether they are upward or downward, from the 
baseline value, and according to one of the six categories of interest. From Table 1, specifically, 
demonstrates an 18% downward shift from the baseline in the Retail and Recreation category. 

Table 1. Google Data Mobility trends reporting of the Retail and Recreation category.

In contrast to the CMR data, Apple data mobility repository focuses is built through tracking 
transportation, rather than the time spent in a particular location. The data is generated by 
counting the number of requests made to Apple Maps for multiple applications such as driving 
directions, walking, and cumulative transit reports. Similar to the CMR data, Apple created a 
baseline value, but only using a single day information, associated with January 13th, 2020. To 
this end, we find these “baseline-oriented” data quite useful, as our models will track the nuances 
or uncertainty resulted from the changes in mobility across time. Therefore, the concept of 
baseline allows us to incorporate scale-free and comparable predictors to our models.
As shown in Table 2, Apple data, called Apple Metric, are reported in the units of hundreds. 
Nevertheless, due to the existence of the baseline, and as part of our data wrangling efforts, we 
transformed the data to changes, in percentage, to the baseline. More specifically, as shown in 
Table 2, in the County of Orange, on January 15, 2020 there was a 9% (referring to the value 
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109.61) increase from the baseline in the “walking” category, whereas on January 16, 2020, one 
can observe a 5% (95.27) decrease in the same category.

Table 2. Apple Data Mobility trends reporting of navigation requests.

We accumulate the Google and Apple data, and the USA Facts data to build a comprehensive 
repository of the modes of mobility and the rates of infection and mortality. To include the 
COVID-19 cases the USA FACTS, we applied a technique known as “web-scraping” (Glez-Peña 
et al., 2014), allowing us to select, filter, and register the data on the dates for which we also have 
collected the mobility information. The data reflects the number of new cases, total number of 
cases daily, and total number of deaths daily across the U.S. counties. 
Lastly, to complete our data repository, we employed the same web-scraping techniques to collect 
the information representing the average income of the counties of interest.

Data Wrangling: Building Moving Windows as a Mean for Standardizing Data 
Given the magnitude of information from each of the three sources (Google, Apple, and USA 
Facts), it is imperative to condense the data into one seamless, accessible, and comprehensible 
format. Taking a step back before combining these datasets together, we needed to incorporate 
important key facts about the nature of the Coronavirus and its manifestation in human subjects. 
To give an example, according to the literature, the exposure to symptoms onset or the incubation 
period, takes somewhere between 2 to 14 days (Lauer et al., 2020). Moreover, research suggests 
that people are most contagious in the 48 hours before symptoms develop and they remain 
contagious for up to 10 days after onset of symptoms (Byrne et al. 2020). To account for the 
above, we adjusted the time epochs or time frames in our data repository. This is similar to 
creating a moving average or moving sum of data, so that it takes into account the incubation 
period associated with the disease. Assuming the infection data is of size n, we can refer to the 
time series of data as follows: 
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Since the cases reported in a given day are influenced by past interactions, we created a new 
variable Y, by considering a moving window of length or lag 4 over the data set of the infected 
cases. This is equivalent with the following:

Since there is a good deal of variation in how the disease is manifested in each individual, 
this approach may lead to overestimations of the true cases reported, but the benefit of this 
exercise is that it generates a holistic data during time bins of equal lengths. This strategy will 
greatly empower our model approaches. Utilizing the strategy of building moving windows is 
particularly beneficial for the mobility data, as we do not know which days people were infected, 
who was infected, and their travel destinations, prior to developing any symptoms.

To achieve the abovementioned tasks, we wrote elaborate R code, taking more than 4 months 
of time, for collecting data, merging and binding data features, and automatically updating 
data from their varied sources. Moreover, though data wrangling, we were able to extract the 
information related to seven Southern California counties (Imperial, Riverside, San Diego, San 
Bernardino, Los Angeles, Orange, and Ventura). These counties were chosen specifically with 
the idea that they represent a host of socioeconomic characteristics, mobility patterns, and 
COVID-19 cases (Azar et al., 2020).

Methods: Modeling the Spread of COVID-19 via Mobility and Economic Data
As described in the above, the goal of this project is to explore the effect of mobility variables, 
and the average-income of the counties from which the data were obtained on the nuances of 
COVID-19 infection rates.  The data are in the form of time-series.  That is, the values associated 
with the COVID-19 cases, and mobility features, are time dependent. Counties are assumed 
to be independent. This may not be entirely true, as they follow certain federal and statewide 
guidelines. Nevertheless, we do not think the latter assumption is an overt simplification or 
oversight in terms of the structure and thereby the outcomes of our models. 
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In this project, we would like to be able to build a regression model whose response variable is the 
rates of infection, and the predictors in the model are mobility and county values. This means we 
aim to construct a regression model for time series. This concept has been explored thoroughly 
in the literature (Ke-dem and Fokianos, 2004). In particular, we model the time series of the cases 
or the response variable with a so-called non-homogeneous Poisson process (Zegerand Qaqish, 
1988). This approach considers a distinct Poisson distribution for the value of the response at 
time t, and allows for those distributions to be related to each other via a time lag whose value 
can be determined through statistical hypothesis tests. More importantly, a regression model can 
be structured through a mechanism known as generalized linear models or GLM in short(Nelder 
and Wedderburn, 1972). When GLM is coupled with ARMA, the result is a powerful modeling 
engine known as GLARMA (Davis et al., 2005). We employ a class of GLARMA models for 
modeling the rate of COVID-19 among counties of interest. 

There is a vast literature on the foundations of modeling time-series data (for a review of the 
literature see Box, Jenkins, Reisnel, 1994; Brockwell and Davis,2007). A general paradigm for 
modeling time-series data was introduced by Box and Jenkins (1970) in which one models 
data based on two sets of components: an auto-regressive component that takes into account 
the number of lags or the period of dependency among data, and a moving average component 
that incorporates the effect of errors resulted from fitting the model to the previous lags. When 
combined, the ARMA model (AR stands for Auto Regressive and MA for Moving Average) is 
a powerful tool for modeling time-series data. Specifically, we let , i.e. the number of cases or 
infection rate at time , to be model with a Poisson distribution whose intensity function  represent 
a time-dependent regression model or

in which
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Where α indicates the baseline,  is the vector of the mobility predictors is comprised of auto-
regressive terms of lag p and moving-average terms of lag q, and  represents the error terms. This 
will allow us to estimate all the parameters in the model by an iterative maximum likelihood 
estimation procedure.

Results
In addition to GLARMA, we examined a series of other machine learning models. A comparative 
analysis confirmed the optimality of the GLARMA in the context of our data analysis. To 
implement the model, we utilized the statistical package GLARMA in the programming language 
R (Dunsmuir and Scott, 2015) for the purpose of modeling the pandemic data. We calibrated and 
selected optimal values for the parameters of the model, through a technique known as cross-
validation (Mosteller and Tukey, 1968; Stone, 1974). We also applied Bootstrap (Efron et al., 1984; 
Bühlmann, 2002) for constructing confidence bands for the predicted values.
Figure 1 provides a nice summary of our analysis. In Figure 1, the actual cases are depicted 
with the red curve, our predicted values are in blue, and the dotted curves are confidence bands 
around the predictive model.

Figure 1. The left graph features the number of COVID-19 cases in Ventura County and the right 
graph features Imperial County. Here, we can see the trends differ drastically.
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It is assuring that all actual values fall within the moving confidence interval of the model. Two 
counties in Southern California are showcased in that figure: Ventura County (on the left) and 
Imperial County (on the right). Notably, Imperial County suffers from a significantly lower 
median income in contrast to Ventura County (according to the U.S. Census Bureau’s American 
Community Survey in 2019, the median income in Ventura county was reported at $33,814, 
whereas the same metric at Imperial county was reported at $18,245.) Strikingly, during the 
months of June to September 2020, when Imperial County experienced a significant surge in the 
reported cases of COVID-19, Ventura’s pattern of the spread of the disease remained nearly flat. 
This outcome was not only consistent across the Southern California counties, but also was clearly 
observable when we fitted the model nation-wide, as shown in Figure 2. In Figure 2, the bimodal 
pattern of the spread of the pandemic, referring to two local surges, are observed. 

Figure 2. The nation-wide counties (two most populated counties per state in the U.S.) trend 
mimics the pattern of the spread of the disease to the one observed in the more economically 
challenged counties in Southern California. 
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Interestingly, there were counties such as Orange County, California, in which the spread of the 
disease signifies a combination of the patterns of both Ventura and Imperial counties, as shown in 
Figure 3. 

Figure 3. Trend of Orange County in the number of COVID-19 cases is a combination of the 
ones for Ventura and Imperial counties.

This may be explained due to the significant variation of the median income, and considerable 
economic disparities, among the cities of Orange County (Scott, 1986; Morello-Frosch 2002, 
Bohn and Danielson, 2016).

Discussion/Conclusion   
In this work, we demonstrate how statistical models can be utilized to capture the patterns of 
the spread of pandemics among the communities with distinct economic dynamics. Specifically, 
these patterns are more vividly at display, when the modeling approach includes different forms 
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of mobility among the residents in seven Southern California counties (Imperial, San Diego, San 
Bernardino, Los Angeles, Orange, Riverside, Ventura).  In those communities, we found that 
counties that were less prosperous showed to have a higher increase in the number of coronavirus 
cases, particularly in the early window of the pandemic, compared to counties that are more 
affluent economically. Remarkably, this pattern is also observable when more prosperous counties 
across the country are contrasted with those that are economically more challenged. Moreover, by 
using a class of time-dependent models known as GLARMA, we were able to accurately predict 
the number of COVID-19 cases from January 2020 to date. Our model proved to be a robust 
method for connecting mobility to predicting the number of cases. To give an example, during 
the months of June to September in 2020, Imperial County experienced a significant increase 
in its reported number of cases, whereas the pattern of cases in Ventura, a considerably more 
prosperous county, remained steady and flat. 

In general, the approach discussed in our work, allows for adopting fresh outlook for tracking 
economic disparities under the pandemic. To offer a pragmatic solution, by identifying different 
trends of the growth, our models can provide critical information to determine which areas are 
in the most need of additional resources. This is important for decision makers when equally 
allocating sufficient resources to different counites. These resources, in many forms, may result in 
more informed policymaking, and may contribute to providing better healthcare assistance, and 
job security, among others. Additionally, our research is showing the power of data science by 
promoting statistical methodologies that can address real major local and global challenges such 
as this pandemic.

Future Work  
Currently leading a new team of undergraduate and graduate students to further investigate 
this multilevel research project. We wish to add new relevant information to our dataset to 
understand these disparities based within the seven Southern California counties. The next 
logical step is to examine the economic disparities within each of the southern California counties 
by obtaining data at the city level. We plan to incorporate new COVID-19 data associated with 
the number of vaccines, as well as preventative measures such as masks mandates policies, and 
the overall growth of the pandemic. Lastly, the aim for our research is to provide insights on how 
the pandemic behaves in addition to becoming valuable information that can create a positive 
impact.
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Abstract 
This paper explores whether Riemann sum approximations using semi-ellipses are more accurate 
than rectangular Riemann sum approximations and whether they increase in accuracy as n 
increases. We derived a formula for our Semi-Ellipse Approximation Method (SEAM), tested 
it with four equations using different n-values, and compared with the results we obtained 
using Right and Left Rectangular Approximations, as well as with the true value obtained using 
integration. Our results using SEAM were the most accurate with the function that was concave 
up on the given interval and increased in accuracy as n increased. The functions that were 
concave down were less accurate and became imprecise as n increased.

						      1. Introduction
Riemann sums are approximations of definite integrals, the area under the curve of a function, 
over a closed interval. When function f is positive, the Riemann sum is the sum of areas of the 
approximating shapes. When function f has both positive and negative values, the Riemann 
sum is the net area, or the sum of areas above the x-axis subtracted by the sum of areas below 
the x-axis (Stewart, 2016). Rie- mann sums are useful when a function does not have a clear 
antiderivative, which is often the case in real-world functions (Herman & Strang, 2016). Seeing 
that real-world functions may not have an exact antiderivative, determining the most accurate 
approximations of these antiderivatives is crucial. This paper deals with the question of whether 
integrals could be approximated more accurately with a different shape; the semi-ellipse. We aim 
to explore the accuracy of approximations using semi-ellipses and to determine which functions 
the semi-ellipse approxima- tions work well with.
There are some functions for which rectangular Riemann sum approximations have a large error. 
The accuracy of the rectangular Riemann sum typically depends on the graph and how many 
rectangles are used to approximate the sum. Generally, the more rectangles used, or the larger n 
value, the more accurate the approximation (Leclair, 2010). In this paper, we will explore whether 
these observations are more accurate using our formula for Riemann sum approximations using 
semi-ellipses.
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From (Alexendre et al., n.d.), we know the formula for a Riemann sum using rectangles is the 
summation of the area of the rectangles in the given interval. To create our equation, we looked at 
the formula for the area of an ellipse,

where r1 and r2 are the vertical and horizontal radii of the ellipse. We divided this equation in 
half in order to determine a formula for the area of a semi-ellipse. We will use this to produce (1).

where n is the number of semi-ellipses we are using to partition the integral, ∆x =              ,and k is 
the counter we are using to sum each semi-ellipse.
	
	 Using this formula, we will explore estimates using SEAM and compare them to the estimates 
using Left Rectangular Approximation Methods (LRAM) and Right Rectangular Approximation 
Methods (RRAM) and to the true value using integra- tion. With these comparisons, we will 
determine how accurate our estimations are, learn which functions SEAM works well with, and 
speculate why this approximation method works better or worse for certain functions.
	
	 We hypothesize that as n increases, the accuracy of our approximations using SEAM will also 
increase, similar to LRAM and RRAM. We also suspect that our approximation method will be 
able to determine the integrals of graphs such as f (x) = sin x since the graph appears elliptical in 
shape between each x-intercept.

RIEMANN SUMS: APPROXIMATING INTEGRALS WITH

SEMI-ELLIPSES

HOLLY C. ANDERSON, CHRISTINE N. GAMEZ, AND SUMMER K. ANDREWS

Abstract. This paper explores whether Riemann sum approximations using
semi-ellipses are more accurate than rectangular Riemann sum approximations
and whether they increase in accuracy as n increases. We derived a formula for
our Semi-Ellipse Approximation Method (SEAM), tested it with four equations
using different n-values, and compared with the results we obtained using Right
and Left Rectangular Approximations, as well as with the true value obtained
using integration. Our results using SEAM were the most accurate with the
function that was concave up on the given interval and increased in accuracy
as n increased. The functions that were concave down were less accurate and
became imprecise as n increased.

1. Introduction

Riemann sums are approximations of definite integrals, the area under the curve
of a function, over a closed interval. When function f is positive, the Riemann sum
is the sum of areas of the approximating shapes. When function f has both positive
and negative values, the Riemann sum is the net area, or the sum of areas above
the x-axis subtracted by the sum of areas below the x-axis (Stewart, 2016). Rie-
mann sums are useful when a function does not have a clear antiderivative, which
is often the case in real-world functions (Herman & Strang, 2016). Seeing that
real-world functions may not have an exact antiderivative, determining the most
accurate approximations of these antiderivatives is crucial. This paper deals with
the question of whether integrals could be approximated more accurately with a
different shape; the semi-ellipse. We aim to explore the accuracy of approximations
using semi-ellipses and to determine which functions the semi-ellipse approxima-
tions work well with.

There are some functions for which rectangular Riemann sum approximations
have a large error. The accuracy of the rectangular Riemann sum typically depends
on the graph and how many rectangles are used to approximate the sum. Generally,
the more rectangles used, or the larger n value, the more accurate the approximation
(Leclair, 2010). In this paper, we will explore whether these observations are more
accurate using our formula for Riemann sum approximations using semi-ellipses.

From (Alexendre et al., n.d.), we know the formula for a Riemann sum using
rectangles is the summation of the area of the rectangles in the given interval. To
create our equation, we looked at the formula for the area of an ellipse,

A = πr1r2
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where r1 and r2 are the vertical and horizontal radii of the ellipse. We divided this
equation in half in order to determine a formula for the area of a semi-ellipse. We
will use this to produce (1).

To calculate the integral approximations using semi-ellipses, we created a for-
mula for SEAM (Semi-Ellipse Approximation Method). For some function f(x), to

approximate
∫ b

a
f(x) dx where a, b ∈ R, we have

(1) SEAMn=N =
n−1∑
k=0

π

2
(f(k∆x+

∆x

2
))
∆x

2

where n is the number of semi-ellipses we are using to partition the integral, ∆x =
b−a
n , and k is the counter we are using to sum each semi-ellipse.
Using this formula, we will explore estimates using SEAM and compare them to

the estimates using Left Rectangular Approximation Methods (LRAM) and Right
Rectangular Approximation Methods (RRAM) and to the true value using integra-
tion. With these comparisons, we will determine how accurate our estimations are,
learn which functions SEAM works well with, and speculate why this approximation
method works better or worse for certain functions.

We hypothesize that as n increases, the accuracy of our approximations using
SEAM will also increase, similar to LRAM and RRAM. We also suspect that our
approximation method will be able to determine the integrals of graphs such as
f(x) = sinx since the graph appears elliptical in shape between each x-intercept.

2. Results

We will explore the accuracy of our estimates using SEAM by comparing them
to the estimates using LRAM, RRAM and to the true value using integration. We
compare these values in the tables given. Note that most of the values in the
tables are approximations rounded to the neared thousandth. To visualize how we
are approximating these integrals, we have included images of the graphs on their
respective intervals of integration with the semi-ellipses drawn onto them. We chose
these functions because they vary in shape, allowing us to seek commonalities in
an assortment of graphs.

2.1. Equation 1. We will be approximating the integral of f(x) = x from [0,5],
splitting the interval into n = 2, 5, 10 partitions. The results of these calculations
are shown in Table 1. The numbers in bold are closest in their respective row to

the true value of
∫ 5

0
x dx.

n-value LRAM RRAM SEAM True Value
2 6.25 18.75 9.81748*
5 10 15 9.81748*
10 11.25 13.75 9.326

True Value 12.5

Table 1. Approximations of
∫ 5

0
x dx

*Extra digits are shown to indicate the values for n = 2 and n = 5
are equivalent
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where n is the number of semi-ellipses we are using to partition the integral, ∆x =
b−a
n , and k is the counter we are using to sum each semi-ellipse.
Using this formula, we will explore estimates using SEAM and compare them to

the estimates using Left Rectangular Approximation Methods (LRAM) and Right
Rectangular Approximation Methods (RRAM) and to the true value using integra-
tion. With these comparisons, we will determine how accurate our estimations are,
learn which functions SEAM works well with, and speculate why this approximation
method works better or worse for certain functions.

We hypothesize that as n increases, the accuracy of our approximations using
SEAM will also increase, similar to LRAM and RRAM. We also suspect that our
approximation method will be able to determine the integrals of graphs such as
f(x) = sinx since the graph appears elliptical in shape between each x-intercept.

2. Results

We will explore the accuracy of our estimates using SEAM by comparing them
to the estimates using LRAM, RRAM and to the true value using integration. We
compare these values in the tables given. Note that most of the values in the
tables are approximations rounded to the neared thousandth. To visualize how we
are approximating these integrals, we have included images of the graphs on their
respective intervals of integration with the semi-ellipses drawn onto them. We chose
these functions because they vary in shape, allowing us to seek commonalities in
an assortment of graphs.

2.1. Equation 1. We will be approximating the integral of f(x) = x from [0,5],
splitting the interval into n = 2, 5, 10 partitions. The results of these calculations
are shown in Table 1. The numbers in bold are closest in their respective row to

the true value of
∫ 5

0
x dx.

n-value LRAM RRAM SEAM True Value
2 6.25 18.75 9.81748*
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10 11.25 13.75 9.326
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Table 1. Approximations of
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0
x dx
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are equivalent
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We will show how we used (1) to calculate SEAMn=5.

∆x =
b− a

n
=

5− 0

5
= 1

SEAMn=5 =
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3

2
) + f(

5

2
) + f(

7

2
) + f(

9

2
)]

=
π

4
[.5 + 1.5 + 2.5 + 3.5 + 4.5]

≈ 9.817

Using SEAM to approximate
∫ 5

0
x dx is generally an underestimate (Table 1) (Fig-

Figure 1. Semi-Ellipse Approximation of
∫ 5

0
x dx with n = 2

ure 1). The values for SEAMn=2 and SEAMn=5 were equivalent. We can see
from Table 1 that SEAM was the most accurate for n = 2; however, as n increased,
SEAM became less accurate than RRAM or LRAM. This contradicts the hypoth-
esis we made in the introduction. We conjecture that this is likely because f(x) is
a linear function.

2.2. Equation 2. We will be approximating the integral of f(x) = x2 from [0,2],
splitting the interval into n = 1, 2, 4 partitions. The results of these calculations
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where r1 and r2 are the vertical and horizontal radii of the ellipse. We divided this
equation in half in order to determine a formula for the area of a semi-ellipse. We
will use this to produce (1).

To calculate the integral approximations using semi-ellipses, we created a for-
mula for SEAM (Semi-Ellipse Approximation Method). For some function f(x), to
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where n is the number of semi-ellipses we are using to partition the integral, ∆x =
b−a
n , and k is the counter we are using to sum each semi-ellipse.
Using this formula, we will explore estimates using SEAM and compare them to

the estimates using Left Rectangular Approximation Methods (LRAM) and Right
Rectangular Approximation Methods (RRAM) and to the true value using integra-
tion. With these comparisons, we will determine how accurate our estimations are,
learn which functions SEAM works well with, and speculate why this approximation
method works better or worse for certain functions.

We hypothesize that as n increases, the accuracy of our approximations using
SEAM will also increase, similar to LRAM and RRAM. We also suspect that our
approximation method will be able to determine the integrals of graphs such as
f(x) = sinx since the graph appears elliptical in shape between each x-intercept.

2. Results

We will explore the accuracy of our estimates using SEAM by comparing them
to the estimates using LRAM, RRAM and to the true value using integration. We
compare these values in the tables given. Note that most of the values in the
tables are approximations rounded to the neared thousandth. To visualize how we
are approximating these integrals, we have included images of the graphs on their
respective intervals of integration with the semi-ellipses drawn onto them. We chose
these functions because they vary in shape, allowing us to seek commonalities in
an assortment of graphs.

2.1. Equation 1. We will be approximating the integral of f(x) = x from [0,5],
splitting the interval into n = 2, 5, 10 partitions. The results of these calculations
are shown in Table 1. The numbers in bold are closest in their respective row to

the true value of
∫ 5

0
x dx.

n-value LRAM RRAM SEAM True Value
2 6.25 18.75 9.81748*
5 10 15 9.81748*
10 11.25 13.75 9.326

True Value 12.5

Table 1. Approximations of
∫ 5

0
x dx

*Extra digits are shown to indicate the values for n = 2 and n = 5
are equivalent
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from Table 1 that SEAM was the most accurate for n = 2; however, as n increased,
SEAM became less accurate than RRAM or LRAM. This contradicts the hypoth-
esis we made in the introduction. We conjecture that this is likely because f(x) is
a linear function.

2.2. Equation 2. We will be approximating the integral of f(x) = x2 from [0,2],
splitting the interval into n = 1, 2, 4 partitions. The results of these calculations
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demonstrated in Equation 1.
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∫ 2

0
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We presumed our SEAM approximation of
∫ π

0
sinxdx would be exactly the true

value since periodic graphs such as sinx or cosx appear elliptical in shape. As
seen in Table 3, SEAMn=1 and the true value of

∫ π

0
sinxdx are not equal. After

drawing Figure 3, we could visually see why our hypothesis was incorrect. Although
our semi-ellipse and the graph of sinx from [0,π] share the same endpoints and
maximum, the curve of the semi-ellipse is slightly broader than the curve of sinx.
A future point of study would be to investigate why this is and see if we can
manipulate graphs such as sinx and cosx to be more elliptical.

Also noteworthy, as with Equation 1, as n increased, the SEAM approximation
became less accurate. Utilizing the error bounds for LRAM and RRAM provided
from Leclair (2010), we see that with RRAM and LRAM, as n increases, the ap-
proximations become more accurate. After comparing the results of Equation 1 to
Equation 2, we had hypothesized that our results became less accurate for equation
1 because f(x) = x is linear, whereas f(x) = x2 is nonlinear. However, as we see
with our nonlinear graph of f(x) = sinx, the SEAM approximation still became
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less accurate as n increased, thus proving our hypothesis incorrect. We question
why this is since f(x) = x and f(x) = sinx are very different graphs.

2.4. Equation 4. We will be approximating the integral of f(x) = lnx from [1,
4], splitting the interval into n = 2, 3, 6 partitions. The results of these calculations
are shown in Table 4. The numbers in bold are closest in their respective row to

the true value of
∫ 4

1
lnx dx.

n-value LRAM RRAM SEAM True Value
2 1.347 3.454 2.047
3 1.792 3.178 2.022
6 2.183 2.876 2.005

True Value 2.545

Table 4. Approximations of
∫ 4

1
lnx dx

Figure 4. Semi-Ellipse Approximation of
∫ 4

1
lnx, dx with n = 6

Using SEAM to approximate the integral of lnx gave us results similar to those
in Equations 1 and 3. As n increased, the SEAM approximation became less
accurate. We then tried to determine similar characteristics between the graphs of
f(x) = x, f(x) = sinx, and f(x) = lnx. The most plausible explanation was the
concavity of the graphs. SEAM proved to be an excellent approximation for the
integral of f(x) = x2, a graph that is concave upward on [0,2]. However, SEAM
became less accurate in graphs that concave downward, specifically f(x) = sinx,
and f(x) = lnx. As for f(x) = x, the function can be interpreted as concave upward
or concave downward (Pierce 2017). This is a special case because f(x) = x is a
straight line. We would like to continue exploring this hypothesis in future research.
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3. Conclusion
	 The Riemann Sum Approximation Methods are useful tools in calculus for approximating 
the net area under a curve. Within the area under the curve of a graph, important information 
often relating to probability is found. This is why it is important to make our approximations as 
accurate as possible. Our mathematical question explored whether we could create a method for 
a Riemann sum approximation using semi-ellipses that was more precise than Left Rectangular 
Approximation Method and Right Rectangular Approximation Method. We predicted 
that similarly to LRAM and RRAM, as the number of shapes n increased, our Semi-Ellipse 
Approximation Method would become more accurate. We also predicted that for the function f 
(x) = sinx, the SEAM would be accurate due to the shape of our graph.
	 In our research in Sections 2.1, 2.3, and 2.4, we found that as n increased, the
approximations using SEAM became less accurate. However, in Section 2.2, our SEAM was more 
accurate than both LRAM and RRAM. Contrary to the other equations, as n increased, SEAM 
became more accurate. Initially, we believed this was because f (x) = x2 is nonlinear. However, we 
now believe this was due to the concavity of the functions. Since f (x) = x2 is concave up, SEAM 
was the most accurate approximation method.
	 For further research, we would like to compare the accuracy of SEAM with a set of functions 
concave up on a given interval to a set of functions concave down on a given interval. This will 
help us determine whether concavity has an influence on the accuracy of the SEAM. In addition 
to comparing the results to LRAM and RRAM, we would compare them to the Midpoint 
Rectangular Approximation Method and the Trapezoidal Approximation Method.
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Abstract
The mineral family perovskites are compounds with applications in a wide variety of technologies. 
The rational design of perovskites has the potential to improve the performance of technologies 
such as MRI machines and solar energy, however, their discovery to date has often been limited 
to a slow synthesis and testing process mostly based on trial and error. This work employs a series 
of machine learning techniques aimed at advancing our understanding of the structural forces 
that drive perovskite formation in hopes that predictive rational design of perovskites can be a 
reality. The machine learning method used incorporates an unsupervised learning technique 
from a set of 883 perovskite compounds with 72 predictors, to categorize known materials by 
structure type. The classification of data is a primary step towards the identification of features 
that can potentially contribute to building a predictive model for perovskite design, thus, Principal 

Component Analysis (PCA) was applied to the final space of 67 variables to reveal natural clustering of 
certain perovskites in the direction of the most significant loadings or eigenvectors of the sample 
covariance matrix. Specifically, results show that predictors that separate structure type are very 
sensitive to anion type. This result has the potential to elucidate the currently unknown structural 
driving forces that can favor perovskite formation with differing anions.

Background
In solid state chemistry, the class of minerals called perovskites express high structural versatility 
that allow these compounds substantial industry applications. Perovskites belong to a class 
of minerals that are defined by corner sharing of octahedra (Fig. 1). Double perovskites, the 
structural type described in the dataset, have the general formula ofwhereandare cations andare 
anions. Unique to the perovskite structure is the ability to support nearly every element in 
the periodic table. Additionally, various site occupations, tilts, and lattice directions intensify 
structural permutability. The importance of perovskite’s heightened structural variability arises 
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from the dependent relationship between physical structure and chemical behavior, that is, in 
solids it is well established that the chemical properties a compound displays are intimately tied 
to its underlying crystal structure. Indeed, perovskite behavior varies greatly, with certain distinct 
permutations owning a considerable amount of utility. Some perovskites possess properties that 
allow them to find application in memory devices (Kang, et al., 2019), ion conductors (Vicente, 
et al., 2017), negative thermal expansion materials (Yamada, et al., 2011), and superconductors 
(Maeno, et al., 1994 ). The synthesis of commercially appealing perovskites is highly desirable not 
only for their immediate application,  but for the modification of existing materials to suit new 
applications as well.

	 While software enabled prediction of some perovskite structures have been observed 
before synthesis (Ramakrishnan, et al., 2015), others are still elusive and costly in both time 
and resources. Machine learning offers an approach that mitigates both of these challenges. 
Recent advancements in machine learning have lent themselves to accurate predictive analysis 
in quantum chemistry approximations (Hansen, et al., 2015), molecular properties (Coley, et al., 
2018), and computer-aided synthesis planning (Lufaso, Woodward, 2001). Similarly, methods 
employed in this study harnesses machine learning techniques in the accurate prediction of new 
perovskite materials with structural characteristics that lend themselves to commercial utility. 
Vast amounts of quality data are required in the use of machine learning algorithms, therefore, 
a  dataset has been compiled from various sources which consists of 2,971 rows of chemical 
compounds and 109 columns. The ultimate challenge will be identifying which features are most 
influential in separation based on crystal structure. Therefore, the purpose of this article is to 
describe the process of feature reduction using Principal Component Analysis, a mathematical 
and computational approach, in pairing with domain expertise of solid state chemistry.
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Figure 1: The distribution of A, B, and X atoms within a single cubic perovskite structure where 
A and B are both cation groups and X is the anion group.  The model displays the general size 
differences among each atom. Size differences among cations and anions within the cubic 
contribute to the perovskite’s chemical properties, physical structure, and behavior.

Data
 Preparation of the dataset for use within a machine learning environment entailed 
comprehensive data cleaning. This feature-oriented dataset is comprised of information retrieved 
from literature data, experimental results, and existing third party perovskite datasets. Prior to 
data preprocessing, the dataset was joined together to form more than 2,000 rows of perovskite 
compounds and 109 columns of feature variable characteristics for each compound respectively. 
The overall structure of the dataset resembles a simple table. Each row of the dataset constitutes 
a perovskite compound while each feature is a chemical or physical property of each atom 
within that row compound entry. The dataset was further organized by way of exploration and 
categorization of known perovskites possessing structural and chemical properties of interest. 
N/A values were withdrawn from each column and headers were adapted to match the format 
requirement for MatLab software.  An initial statistical learning algorithm was run on the data 
and yielded convoluted, insensible results which meant that further data preprocessing needed 
to be performed. Categorical data was extricated from the set which reduced the row count to 
roughly 883 compound rows and 67 feature columns (Table 1) and was then exported to Rstudio 
for principal component analysis.
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Table 1: Overview of the 67 features used to represent the dataset 

Chemistry Methods

Solid state chemists used the intrinsic relationship between structural and chemical properties to 
identify perovskite features that would be the most influential in the prediction of commercially 
viable perovskites, meaning feature selection served as the first data preprocessing step prior 
to the machine learning assisted dimensionality reduction method described later on. It was 
determined that additional information related to physical features should be appended to the 
dataset to increase the predictors. To this end, a lookup script was employed to add information 
to each row given that a specified atom substring matched within the compound data entry. 
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Machine Learning Methods
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Preliminary Results 
The following plots were generated using the “stats” library in Rstudio:

Figure 2: A biplot for the perovskite population. In this plot, the features in the dataset are 
represented as dots and the loadings are the vectors. The loadings indicate not only the 
direction, but also the weight of each linear transformation. Therefore, we can detect natural 
clusters by focusing locally on each direction, followed by identifying perovskites that are in the 
same direction.

The loadings of the biplot (Fig. 2) distinguish features that affect the total variation in the 
perovskites population. Notable among these are X-site features, AREN of A, and coefficient 
of linear thermal expansion of A. Loading vectors that overlap with each other indicate strong 
similarity within the PC space. Features exhibiting strong similarity to each other can be 
extricated from the dataset on the principle that most of the information that can be gathered 
from one variable can be represented by the overlapping similar variable. The size of the vector, 
or its magnitude, is interpreted as the level of importance the variable has to the PC space. A 
vector with a high magnitude captures much of the information in the PC space and thus defines 
itself as a feature which comprehensively represents the maximum variation in the data. Those 
features will be used as the test set for the machine learning algorithm. Likewise, features with low 
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magnitude can be liberated from the dataset, as they do not influence the variation in the dataset. 
The dots behind the loadings on the biplot are the score plot which describes clusters and shape of 
the data.

Loading plot (Fig. 2) shows how definitively each feature influences a principal component. 
Vectors that are close together mean positive correlation while those that meet at 90° have 
features that are likely not correlated. Vectors that diverge at 180° have features that are negatively 
correlated. Loadings that have high magnitude are said to be prominent features of the PC space.

Figure 3: All compounds plotted with respect to first and second principal components. Color 
differences added to increase visibility of various compounds.
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Figure 4: Similar to Figure 3, compounds are plotted with respect to first and second principal 
components. Two colors are used to highlight clustering of anion compounds.

From the two plots above (Fig. 3, 4), the prominence of X-site features in conjunction with the 
natural anion clustering exhibited in the PC score plots suggest false positivity of X-site feature 
influence. This is illustrated by the various compounds represented in the PC space clustering 
together with other like anion groups. This demonstrates a sensitivity to anion type which will 
need to be addressed via an amendment to the design rules.

Summary
After the initial PCA trial, X and Xʹ site features were shown to be a falsely diverting influence in 
the PC space, additionally, properties that showed the most similarity were atomic mass, atomic 
radius, Pauling energy number, ionization potential, and AREN site and site prime properties, 
however, to accurately determine if these properties can be condensed, X-site false positivity 
will need to be addressed. Viewing the plots above (Fig. 3, 4), it is shown that oxygen anion 
compounds are clustered together over the PC space, but an empirical understanding of solid-
state chemistry will need to be used to interpret results and inform future direction.
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Future Work
The set of analyses included in this paper may be taken as initial steps towards identification and 
categorization of perovskites. However, further modeling is needed to tease out the features that 
directly contribute to a potential response variable. For example, as an immediate future step, the 
authors are planning to employ a group of generalized linear models to not only gauge the effect 
of select features but their direction on a response variable which is a natural grouping of the 
perovskites from the feature space. Moreover, compounds will be divided into their own anion 
groups and PCA will be run yet again in order to create more precise natural clusters. 
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Abstract. The Fibonacci number sequence has been a source of fascination for both 
mathematicians and lay persons for hundreds of years.  In this paper we look not at the 
Fibonacci numbers, but the numerical “negative space,” or gaps, between them.  These 
Fibonacci Gaps are based on the number of natural numbers between two successive 
Fibonacci numbers.  We prove the relationship between the Fibonacci sequence and 
their related Fibonacci Gaps, and explore other mathematical relationships found in 
these gaps.

Introduction.  The Fibonacci number sequence has been a source of fascination for both 
mathematicians and lay persons alike.  Works have ranged from applications of Fibonacci 
numbers in stock market trading (Boroden, 2008) to exploratory activities for young children 
(Garland 1990).  Mathematical interests include the relationship between Fibonacci numbers 
and the golden ratio, as well as other more advanced explorations commonly taught at the 
undergraduate level (e.g., Posamentier & Lehmann, 2007; Vorob’ev, 2011). The proofs and 
observations presented in this paper are built on the Fibonacci sequence, which further provides 
students with reinforcement of the connecting nature of mathematics, especially those in proof 
courses.  Perhaps one of best-known (American) references of Fibonacci numbers and the 
golden ratio is from Walt Disney’s classic 1959 cartoon, Donald in Mathmagic Land.  All of these 
applications and explorations are based on the Fibonacci number sequence 1, 1, 2, 3, 5, 8, 13, 
....

Number Gaps.  The difference of two numbers is typically thought of as the continuous 
“distance” between them on a number line.  For example, any eight-year old boy knows that his 
five-year old sister is three years younger than he is (especially if they were born in the same 
month).  However, there are only two “ages” that are separating the children, namely, age 6 and 
age 7.  Thus, the “age gap” between the children is actually 3 – 1, or 2 (Figure 1).  

		  	 |		  |		  |		  |	 ___ 
		             5	            6	            7	             8

Figure 1: The “Age Gap” Number Line

If we think of the number line as a continuum that includes non-integer values, then, indeed, 
we would say that the boy is (about) three years older than his little sister.  However, in keeping 
with the discrete nature of the Fibonacci numbers (think bunnies!), we will choose to focus here 
on the age gap viewpoint. It is in this spirit that we define the number gap between two natural 
numbers, a and b, where a < b and b – a > 1, to be the number of natural numbers that are 
greater than a and less than b.  Thus, the number gap between a and b is b – a – 1.
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Fibonacci Gaps.  The Fibonacci sequence is

		  1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . .		

Using the standard notation for the Fibonacci numbers, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, 
..., where  

		  fk+2 = fk+1 + fk							       (1)

for k = 1, 2, 3, .... 
The first non-zero number gap occurs between the successive Fibonacci numbers f4 and 

f5.  From Figure 2 we can see that the first five Fibonacci Gap numbers (in pink) are g1 = 1, g2 = 
2, g3 = 4, g4 = 7, and g5 = 12.

Figure 2: Counting Fibonacci Gap Numbers Between Fibonacci Numbers

If we denote the Fibonacci Gap numbers by g1, g2, g3, etc., we can compare the Fibonacci 
numbers with the two Fibonacci sequence numbers which reside to the left and right of each 
Fibonacci Gap number. We will refer to these residing Fibonacci numbers as Fibonacci “border” 
numbers. For example, the Fibonacci Gap number 1 is associated with the Fibonacci numbers 3 
and 5. Similarly, the Fibonacci Gap number 2 is associated with the Fibonacci numbers 5 and 8. 
(Table 1). Please note that, again, one could interpret the gap between two Fibonacci numbers 
to be the difference of those numbers rather than the number of integers between them.  In this 
case, the new sequence is, by definition, the original Fibonacci sequence.

Table 1: Fibonacci Numbers and Their Associated Fibonacci Gap Numbers
Fib. 
Nos.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f 11

1 1 2 3 5 8 13 21 34 55 89
Fib. 

Gaps
1 2 4 7 12 20 33
g1 g2 g3 g4 g5 g6 g7

Two observations can be quickly gleaned from Table 1.  As noted earlier, each Fibonacci 
Gap number is one less that the difference of its two bordering Fibonacci numbers.  For 
example, 20 = 55 – 34 –1, that is, g6 = f10 – f9 – 1.  In general, the kᵗʰ Fibonacci Gap number, gk, 
is given by

		  gk = fk+4 - fk+3 - 1  						      (2)
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for k = 1, 2, 3, ....  In addition, since fk+4 = fk+2 + fk+3, we have that

		  gk = fk+4 – fk+3 – 1 = (fk+2 + fk+3) – fk+3 – 1 = fk+2 – 1.

Thus, for k = 1, 2, 3, ... , 

		  gk = fk+2 – 1.							       (3a)

For example, g4 = 7 = 8 – 1 = f6 – 1.  

Three Fibonacci Gap Number Relationships.   If we consider the set of Fibonacci Gap 
numbers to be a sequence it is own right, we can readily observe three basic relationships 
between Fibonacci numbers fk and Fibonacci Gap numbers gk (Table 2).

Table 2: The Sequence of Fibonacci Numbers 
and the Sequence of Fibonacci Gap Numbers

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fk 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610
gk 1 2 4 7 12 20 33 54 88 143 232 376 609 986 1596

First, as noted above, 

gk = fk+2 – 1 or							       (3a)
fk+2 = gk + 1.							       (3b)

 Second, since fk+4 = fk+3 + fk+2, we adjust subscripts in equation (3b) to obtain
 gk+2 + 1 = (gk+1 + 1) + (gk + 1), or

gk+2 = gk+1 + gk + 1.						      (4)

That is, each Fibonacci Gap number is one more than the sum of the two previous Fibonacci 
Gap numbers.  And third, since gk = gk-1 + gk-2 + 1 and gk-2 + 1 = fk, we have

 		  gk = gk-1 + fk.							       (5)

Equation (5) gives a quick way of computing Fibonacci Gap numbers using a “diagonal sum” 
approach in Table 2.  For example, starting with g3 = 4, we have 4 + 3 = 7; 7 + 5 = 12; 12 + 8 = 
20; and etc.

Other relationships between the Fibonacci numbers and the Fibonacci gap numbers can be 
seen as well.  For example, a well-known identity for the sum of the first k Fibonacci numbers is

f1 + f2 + . . . + fk = fk+2  – 1.
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From equation 3a, gk = fk+2 – 1.  Thus, the kth Fibonacci gap number is the sum of the first k 
Fibonacci numbers:

f1 + f2 + . . . + fk = gk.

A Fibonacci Gap Surprise.  One well-known result of Fibonacci numbers is that the difference 
of the square of a Fibonacci number and the product of its two bordering Fibonacci numbers 
is –1 or 1, depending on whether the index of the number is odd or even (e.g., Posametier & 
Lehmann, 2008).  For example, for k = 5 we have

f6
2 – f5 f7 = 82 – 5 × 13 = 64 – 65 = –1, 

while, for k = 6,

f7
2 – f6 f8 = 132 – 8 × 21 = 169 – 168 = 1.

In general, 

fk+1
2 – fk fk+2 = –1 if k is odd, and				    (6a)

fk+1
2 – fk fk+2 = 1 if k is even.					     (6b)

While applying this relationship directly to the sequence of Fibonacci Gap numbers did not 
seem to yield a similar result, we observed that by rewriting equations (6a) and (6b) we could 
translate the result to the sequence gk.  By adding in and subtracting out the product fk fk+1 into 
the left hand side of equations (6a) or (6b), we have

fk+1
2 – fk fk+2  	 =  fk+1

2 + fk fk+1 – fk fk+1 – fk fk+2

		  = fk+1 (fk+1 + fk) – fk (fk+1 + fk+2)

		  = fk+1 fk+2 – fk fk+3 .

Thus, equations (6a) and (6b) can be rewritten as 

		  fk+1 fk+2 – fk fk+3 = –1 if k is odd, and				    (7a)
fk+1 fk+2 – fk fk+3 = 1 if k is even.				   (7b)

In the example above for k = 6, equation (7b) gives

f7 f8 – f6 f9 = 13 × 21 – 8 × 34 = 273 – 272 = 1.

Equations (7a) and (7b) produce an alternating sequence {sk} of –1’s and 1’s:

{sk} = {–1, 1, –1, 1, –1, 1, –1, 1, ...}.				    (8)
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What would happen if we applied the left-hand side of equations (7a or 7b) directly to the 
Fibonacci Gap numbers, that is, if we computed

gk+1 gk+2 – gk gk+3

for different values of k?  For example, if k = 1, we have 

g2 g3 – g1 g4 = 2 × 4 – 1 × 7 = 8 – 7 = 1.

For k = 2, 
														            
g3 g4 – g2 g5 = 4 × 7 – 2 × 12 = 28 – 24 = 4.

Surprisingly, though, for k = 3 we get the same result:

g4 g5 – g3 g6 = 7 × 12 – 4 × 20 = 84 – 80 = 4.

These computations produce the sequence {tk}:

		  {tk} = {1, 4, 4, 9, 12, 22, 33, 56, ...}.				    (9)

Was there a predictable pattern for the sequence {tk} and, perhaps more importantly, were the 
numbers in the Fibonacci number-based sequence {sk} related to those in the Fibonacci Gap-
based sequence {tk} and, if so, how?

The Mystery Revealed.  Equations (7a) and (7b) state that

		  fk+1 fk+2 – fk fk+3 = –1 if k is odd, and				    (7a)
fk+1 fk+2 – fk fk+3 = 1 if k is even.				   (7b)

Using the relationship between Fibonacci numbers and Fibonacci Gap numbers, fk+2 = gk + 1	  
from equation (3b), equations (7a) and (7b) can be rewritten as

(gk-1 + 1)(gk + 1) – (gk-2 + 1)(gk+1 + 1) = –1 if k is odd, and		  (10a)
(gk-1 + 1)(gk + 1) – (gk-2 + 1)(gk+1 + 1) = 1 if k is even.		 (10b)

We consider each case separately.

Case 1: k is odd.   Removing parentheses in equation (10a), we have

gk-1 gk   + gk-1 + gk + 1 – gk-2 gk+1 – gk-2 – gk+1 – 1 = – 1.

Since gk-1 + gk + 1 = gk+1, we have
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gk-1 gk   + gk+1 – gk-2 gk+1 – gk-2 – gk+1 – 1 = – 1,  
or

	
gk-1 gk  – gk-2 gk+1 – gk-2 = 0.

Rewriting the indices in the above equation based on the kth Fibonacci Gap number, we have	

		  gk+1 gk+2  – gk gk+3 = gk.  					    (11a)

Equation (11a) is the Fibonacci Gap counterpart of equation (7a) for Fibonacci numbers, in 
which tk =  gk+1 gk+2  – gk gk+3 is not –1, but gk.  For example, for k = 5 and g5 = 12, we have

		  t5 = g6 g7 – g5 g8 = 20 × 33 – 12 × 54 = 660 – 648 = 12 = g5.

Table 3a shows (in bold) this result for odd values of k.

Table 3a: The Sequence of Fibonacci Gap Numbers 
and the Sequence of {tk} Numbers for Odd Values of k

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
gk 1 2 4 7 12 20 33 54 88 143 232 376 609 986 1596
tk 1 4 4 9 12 22 33 56 88 145 232 378 609 988 1596

Case 2: k is even.   As before, removing parentheses in equation (10b), we have

gk-1 gk   + gk-1 + gk + 1 – gk-2 gk+1 – gk-2 – gk+1 – 1 = 1.

Since gk-1 + gk + 1 = gk+1, we have
	

gk-1 gk   + gk+1 – gk-2 gk+1 – gk-2 – gk+1 – 1 = 1,  

or
	

gk-1 gk  – gk-2 gk+1 – gk-2 = 2.

Rewriting the indices in the above equation based on the kth Fibonacci Gap number, we have	

		  gk+1 gk+2  – gk gk+3 = gk + 2. 					     (11b)

Equation (11b) is the Fibonacci Gap counterpart of equation (7b) for Fibonacci numbers, in 
which tk = gk+1 gk+2  – gk  gk+3 is not 1, but gk + 2. For example, for k = 6 and g6 = 20, we have

	 t6 = g7 g8 – g6 g9 = 33 × 54 – 20 × 88 = 1782 – 1760 = 22 = 20 + 2 = g6 + 2.
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Table 3b shows (in bold) this result for even values of k.

Table 3b: The Sequence of Fibonacci Gap Numbers 
and the Sequence of {tk} Numbers for Even Values of k

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
gk 1 2 4 7 12 20 33 54 88 143 232 376 609 986 1596
tk 1 4 4 9 12 22 33 56 88 145 232 378 609 988 1596

Combining both even and odd cases for k, we get the sequence

	 {tk} = {1, 4, 4, 9, 12, 22, 33, 56, 88, 145, 232, 378...},		  (9)

where tk = gk for odd values of k and tk = gk + 2 for even values of k.  The paired equations are:

gk+1 gk+2  – gk gk+3 = gk if k is odd, and				    (11a)
gk+1 gk+2  – gk gk+3 = gk  + 2 if k is even.			   (11b)

An Unexpected Connection.  The terms in the sequence 

{sk} = {–1, 1, –1, 1, –1, 1, –1, 1, ...}				    (8)

can be expressed recursively as

sk+2 = sk+1 + sk – 1 if k is odd, and				    (12a)
sk+2 = sk+1 + sk + 1 if k is even.				   (12b)

What would the terms in the sequence {tk} look like if written recursively?  Using the basic 
relation

gk+2 = gk+1 + gk + 1,						      (4)

we can easily consider the cases for when k is odd and when k is even.  If k is odd, then k + 
2 is odd but k + 1 is even.  Thus, tk = gk, tk+2 = gk+2, while tk+1 = gk+1 + 2, or gk+1 = tk+1 – 2 from 
equations (11a) and (11b).  Substituting into equation (4) gives

tk+2 = (tk+1 – 2) + tk + 1,

or

tk+2 = tk+1 + tk – 1.						      (13a)

If k is even, then k + 2 is even but k + 1 is odd.  Thus, tk = gk + 2, tk+2 = gk+2 + 2, while tk+1 = gk+1.  
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As before, substituting into equation (4) gives

tk+2 – 2 = tk+1 + tk – 2 + 1,

or

tk+2 = tk+1 + tk + 1.						      (13a)

Equations (13a) and (13b) are identical analogs to equations (12a) and (12b):

tk+2 = tk + tk+1 – 1 if k is odd, and				    (13a)
tk+2 = tk + tk+1 + 1 if k is even.					     (13b)

Thus, the recursive property for the Fibonacci Gap numbers accompanying sequence{tk}(shown 
in equations 13a and 13b) is exactly the same as that for the Fibonacci numbers accompanying 
sequence{sk} (shown in equations 12a and 12b)!

Fibonacci Gaps and the Golden Ratio.  The Fibonacci sequence is perhaps best-known for 
its link to the “Golden Ratio.”  The ratios of consecutive Fibonacci numbers, fk+1: fk, produce an 
alternating sequence of numbers approaching

		

What about the Fibonacci Gaps? Do they approach the golden ratio as well? Taking the ratios of 
successive Fibonacci Gap numbers, gk+1: gk, we get the sequence (to three decimal places)

		  2, 2, 1.75, 1.714, 1.666, 1.65, 1.636, 1.629, 1.625, 1.622, 	      (14)

We can quickly observe two things about the sequence in (14). First, the ratios seem to be 
approaching some limit (perhaps phi).  And second, unlike the Fibonacci number ratios which 
fluctuate, the Fibonacci Gap number ratios seem to be strictly decreasing.  Table 4 compares 
the Fibonacci Gap number ratios with the Fibonacci number ratios.



121

Table 4: Fibonacci Gap Numbers and the Golden Ratio
Fibonacci Numbers Fibonacci Gap Numbers Difference

k fk fk+1: fk gk gk+1: gk (gk+1: gk) – 
(fk+1: fk)

1 1 1 1 2 1
2 1 2 2 2 0
3 2 1.5 4 1.75 0.25
4 3 1.666666667 7 1.714285714 0.047619048
5 5 1.6 12 1.666666667 0.066666667
6 8 1.625 20 1.65 0.025
7 13 1.615384615 33 1.636363636 0.020979021
8 21 1.619047619 54 1.62962963 0.010582011
9 34 1.617647059 88 1.625 0.007352941

10 55 1.618181818 143 1.622377622 0.004195804
11 89 1.617977528 232 1.620689655 0.002712127
12 144 1.618055556 376 1.619680851 0.001625296
13 233 1.618025751 609 1.619047619 0.001021868
14 377 1.618037135 986 1.618661258 0.000624122
15 610 1.618032787 1596 1.618421053 0.000388266
16 987 1.618034448 2583 1.618273326 0.000238878
17 1597 1.618033813 4180 1.618181818 0.000148005
18 2584 1.618034056 6764 1.618125370 0.000091313
19 4181 1.618033963 10945 1.618090452 0.000056489
20 6765 1.618033999 17710 1.618068888 0.000034889

The Fibonacci ratios seem to trail behind the Fibonacci Gap ratios. However, the difference 
between the two ratios, as seen in Table 4, decreases as we get further in the respective 
sequences, suggesting that as k gets large, the ratio of gk+1 to gk  approaches phi. Since gk = fk+2 
– 1 (equation 3a), we have

As k approaches infinity, approaches zero and  approaches phi. Thus, the ratio   of successive 
terms of Fibonacci Gap numbers is, indeed, the Golden Ratio.

Conclusion.  In this brief journey we have explored the number gaps between Fibonacci 
numbers. Fibonacci numbers and Fibonacci Gap numbers are closely related (Fibonacci Gap 
numbers essentially trail Fibonacci numbers by one), so that the ratio of successive terms in 
each sequence is phi, the Golden Ratio.  However, we observed some differences as well, 
especially in looking at the difference of the product of pairs of four successive Fibonacci and 
Fibonacci Gap numbers, fk+1 fk+2 – fk fk+3  and gk+1 gk+2  – gk gk+3. However, each sequence of these 
differences, sk and tk, can be written recursively in exactly the same way.  
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	 Table 5 gives seven identities that are known for Fibonacci numbers (Sundstrom, p. 
207), with Identity 6 already extended to Fibonacci Gap numbers in this paper.

Table 5: Seven Fibonacci Number Identities
Identity Fibonacci Identity Fibonacci Gap Identity

1 f4k is a multiple of 3 ?
2 f5k is a multiple of 5 ?
3 f1 + f2 + . . . + fk-1 = fk+1  – 1 ?
4 f1 + f3 + . . . + f2k-1 = f2k ?
5 f2 + f4 + . . . + f2k = f2k+1 – 1 ?
6 fk+1 fk+2 – fk fk+3 = –1 if k is odd;

fk+1 fk+2 – fk fk+3 = 1 if k is even
gk+1 gk+2  – gk gk+3 = gk if k is odd;

gk+1 gk+2  – gk gk+3 = gk  + 2 if k is even
7 f1

2+ f2
2 + . . . + fk

2 = fk fk+1 ?

The question marks in Table 5 are open questions in which the interested reader can explore 
further and perhaps draw her or his own connection between the Fibonacci Identity and a 
possible Fibonacci Gap Identity. We invite the interested reader to play around with these and 
see if there is a Fibonacci Gap extension to be discovered for any of the other identities as well.
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1 Introduction

Partial order-preserving injections comprise an important subset of the collection of all partial
injections from a set to itself. This latter collection forms a monoid (defined below) into which any
inverse monoid can be embedded [5]. Embeddings preserve algebraic structure, so that the collection
of all partial injections on a set becomes a central object of study in the theory of inverse monoids.
In this paper, we will be specifically studying the monoid consisting of partial order-preserving
injections. These order-preserving maps often arise in the context of studying transformations of
partially ordered sets. With this motivational background, let us turn to a brief review of basic
concepts in the theory of monoids.

Definition 1. A monoid is a non-empty set M together with a binary operation ∗ that satisfies
the following axioms:

1) Closure: If a, b ∈ M, then a ∗ b ∈ M .

2) Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, and c ∈ M .

1
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3) Existence of an Identity: An element e ∈ M is called the identity element if a∗e = a = e∗a
for every a ∈ M .

Example 1. The set of positive real numbers under multiplication, (R+,×), is a classic example
of a monoid, with identity element 1.

Example 2. Note (R+,+) is not a monoid since 0 does not belong to R+. However, ([0,∞),+) is
a monoid with identity element 0.

Note that the monoid in Example 2 forms a submonoid of (R,+), since it is a subset of R that
forms a monoid under +.

Definition 2. A semigroup is a non-empty set S that satisfies the closure and associativity axioms
in Definition 1. Thus, every monoid is a semigroup.

Any semigroup can be made into a monoid by adjoining an identity element. In Example 2, for
instance, starting with the semigroup (R+,+), we form the monoid ([0,∞),+) = (R+ ∪ {0},+).

Example 3. Let X be a non-empty set. An expression of the form x1x2x3 · · · xn (with xi ∈ X) is
called a word on the alphabet X. The set of all words on X is the free semigroup on X, denoted
X+. We can form a monoid by adjoining an empty word, say Λ, to X+. This monoid, denoted X∗,
is called the free monoid on X.

The operation in X+ and X∗ is concatenation. If we let X be the English alphabet of lowercase
letters, then some elements of X+ are

road ∗ runner = roadrunner,

sledge ∗ hammer = sledgehammer,

aababba ∗ babbba = aababbababbba.

Note that we often omit the operation ∗ from the notation when the operation is known. Thus, for
instance, we may write a ∗ b simply as ab.

Example 4. The symmetric inverse monoid, SIM(S), consists of all partial injections from
a set S to itself. The operation on SIM(S) is given by composition of mappings, where we will
adopt the convention that mappings are composed from left to right.

The monoid SIM(S) is of great relevance to this paper. Therefore, let us take some time
to elaborate on its structure. Consider the particular case where S = {1, 2, 3, . . . , n}, denoted
as SIM(n). The identity element of SIM(n) is the element that fixes each element of the set
{1, 2, 3, . . . , n}. The elements of SIM(n) can be represented by a classic two-line notation. For
example,

τ =

(
1 2 3 4 5 6

2 1 4 6 − 5

)
∈ SIM(6). (1)

In this element, we observe that 1 maps to 2, 2 maps to 1, 3 maps to 4, 4 maps to 6, 5 is not
in the domain, and 6 maps to 5. We denote the domain of τ by Dom(τ) and the range of τ by
Rng(τ).

Definition 3. The rank of an element τ ∈ SIM(S) is

rank(τ) = |Dom(τ)| = |Rng(τ)|.

2
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In (1), rank(τ) = 5. Also, note that the set of all elements in SIM(n) of rank n forms the well-
known group called the symmetric group, denoted Sn. Consult any introductory text on modern
algebra for more information([6], [8]).
To illustrate how composition of partial permutations works, consider this example:



1 2 3 4 5 6

3 4 − 5 6 −






1 2 3 4 5 6

2 1 4 6 − 5


 =



1 2 3 4 5 6

4 6 − − 5 −


 .

Of course, the rank of the composition of two partial mappings cannot exceed the rank of either
element comprising the product. Here, for example, we see that the elements on the left side have
rank 4 and 5, respectively, while the resulting product on the right side only has rank 3.

There are some fundamental equivalence relations which help us understand the structure of
semigroups and monoids. These are known as the Green’s relations [5]. To discuss these, we
need some notation: given a monoid M and t ∈ M , denote Mt = {mt : m ∈ M} and tM = {tm :
m ∈ M}. Now, let α, β ∈ M . Then

1. α and β are L-related, denoted α L β, if and only if there exist x, y ∈ M such that
xα = β, yβ = α. That is, β ∈ Mα and α ∈ Mβ.

2. α and β are R-related, denoted α R β, if and only if there exist u, v ∈ M such that
αu = β, βv = α. That is, β ∈ αM and α ∈ βM .

3. The D-relation, D = L ◦ R = R ◦ L, is the smallest equivalence relation containing both L

and R.

4. The H-relation is the intersection of L and R. That is, α and β are H-related, denoted
α H β, if and only if α L β and α R β.

The Green’s relations are equivalence relations, and hence form equivalence classes, which we
will refer to as L-classes, R-classes, D-classes, and H-classes.

We are now ready to begin studying the particular monoid of interest to us in our research, and
in the next section, we will determine its Green’s relations.

2 Partial Order-preserving Injections

The monoid of interest to our research is the monoid of partial order-preserving injections,
denoted by POI(n), which is a submonoid of SIM(n). An element σ of SIM(n) is an element of
POI(n) if whenever i < j in {1, 2, 3, . . . , n}, then σ(i) < σ(j). For example,

σ =

(
1 2 3 4 5 6

3 4 − 5 6 −

)
∈ POI(6),

since the values on the second row appear in increasing order. However, the element τ in (1) is not
an element of POI(6).

Definition 4. A partial identity in POI(n) is an element σ such that for each i ∈ {1, 2, 3, . . . , n},
either σ(i) = i or i /∈ Dom(σ).
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As we will see in our main results, partial identities play an important role in describing eco-
nomical generating sets of POI(n). An example of a partial identity is the element

τ =

(
1 2 3 4 5 6

1 − 3 − 5 −

)
∈ POI(6),

whose rank is 3. Throughout this paper, we denote the subset of POI(n) of elements of rank k as

POIk(n). For example, rank(τ) = 3, so τ ∈ POI3(6). Note that POI(n) =
n⋃

k=0

POIk(n), and from

[1],

|POI(n)| =
n∑

k=0

(
n

k

)2

.

The kth term of this summation counts the number of elements in POIk(n). For example,

|POI(4)| =
4∑

k=0

(
4

k

)2

=

(
4

0

)2

+

(
4

1

)2

+

(
4

2

)2

+

(
4

3

)2

+

(
4

4

)2

=

(
8

4

)
= 70.

We now look at the Green’s relations for the monoid POI(n). The next lemma summarizes the
results. The proof is routine and is omitted.

Lemma 1. Let α, β ∈ POI(n). Then:

• α R β if and only if Dom(α) = Dom(β).

• α L β if and only if Rng(α) = Rng(β).

• α D β if and only if rank(α) = rank(β).

• α H β if and only if α = β.

We give some examples of the R and L relations in POI(n).

Example 5. Let

α =

(
1 2 3 4 5 6 7

2 4 5 6 7 − −

)
and β =

(
1 2 3 4 5 6 7

2 3 4 5 6 − −

)

in POI(7). Since

α

(
1 2 3 4 5 6 7

− 2 − 3 4 5 6

)
= β

and

β

(
1 2 3 4 5 6 7

− 2 4 5 6 7 −

)
= α,

we see that α R β.

Example 6. Let

σ =

(
1 2 3 4 5 6 7 8

3 4 5 6 − − 7 8

)
and γ =

(
1 2 3 4 5 6 7 8

3 − 4 5 6 7 8 −

)

4
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in POI(8). We have (
1 2 3 4 5 6 7 8

1 − 2 3 4 7 8 −

)
σ = γ

and (
1 2 3 4 5 6 7 8

1 3 4 5 − − 6 7

)
γ = σ,

so we conclude that σ L γ.

Remark 1. Let α, β ∈ POIn−1(n). Then αβ ∈ POIn−1(n) if and only if Rng(α) = Dom(β). In
this case, α R αβ and β L αβ.

We will now turn our attention to the main problem in this paper, the identification of economical
generating sets for POI(n).

Definition 5. A generating set for an algebraic structure Z (such as a group, semigroup, monoid,
vector space, and so on) is a collection C of elements in Z such that each element in Z can be
expressed by applying a finite sequence of algebraic operations to elements in C.

In linear algebra, a generating set for a vector space is commonly known as a spanning set.

Definition 6. A generating set for Z is called an minimal generating set if no proper subset of
it generates Z.

The search for minimal generating sets of algebraic structures has led to a steady stream of
work and has important applications in mathematics and computer science. In [2], these sets were
classified for SIM(n), while in [3], they were studied in the symmetric and alternating groups.

Returning to our study of POI(n), observe that POIn(n) consists only of the identity element

id =

(
1 2 3 · · · n− 1 n

1 2 3 · · · n− 1 n

)
.

This element is uninteresting with respect to the generating process, so we will focus our attention
on generating the set POI(n)−{id}. For the remainder of this paper, when we speak of generating
POI(n), we will mean that we are generating POI(n) − {id}, which itself is a subsemigroup of
POI(n). The key to generating POI(n) − {id} is to generate all of the rank n − 1 elements first.
In fact, it is customary to restrict generating sets of POI(n) to consist of elements of rank n − 1.
By multiplying elements of POIn−1(n) together, we can obtain elements of lower rank (see Remark
1). We arrange the elements in POIn−1(n) in an n × n array as shown in Figure 1 for POI(4).
Elements in the same row have the same domain, elements in the same column have the same range,
and elements on the main diagonal are partial identities. Let

Ŝi = {1, 2, . . . , i− 1, i+ 1, . . . , n− 1, n}

for 1 ≤ i ≤ n. For example, for n = 4, if

σ =

(
1 2 3 4

2 3 − 4

)
, (2)

then Dom(σ) = Ŝ3 and Rng(σ) = Ŝ1.

5
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Figure 1: 4× 4 array of the elements in POI3(4).

Note that if σ is an element of POIn−1(n) with Dom(σ) = Ŝi and Rng(σ) = Ŝj, then we can
uniquely denote σ as the pair of numbers (i, j). For example, the element σ in (2) can now be
represented as σ = (3, 1).

Notation: Let X be a subset of POIn−1(n). Let ΩX denote a directed graph on {1, 2, . . . , n},

where a b is a directed edge in ΩX if and only if (a, b) ∈ X.
If σ = (a, b) and τ = (c, d) are two elements of POIn−1(n), then note that στ = (a, b)(c, d) = (a, d) if
b = c. If b �= c, by Remark 1 the rank of στ drops and we do not express στ as a pair. Multiplication
can now be performed by following directed edges, as shown in our next examples.

Example 7. In POI(4),
(
1 2 3 4

2 3 − 4

)(
1 2 3 4

− 1 2 3

)
=

(
1 2 3 4

1 2 − 3

)

can be expressed as (3, 1)(1, 4) = (3, 4), which is represented graphically as

4 3

21 (3)

In (3), the dotted arrow indicates the result of the composition of the two solid arrows.

Example 8. Again in POI(4),
(
1 2 3 4

− 1 2 3

)(
1 2 3 4

1 2 4 −

)(
1 2 3 4

1 3 − 4

)
=

(
1 2 3 4

− 1 3 4

)

can be represented as (1, 4)(4, 3)(3, 2) = (1, 2), which is represented graphically as

4 3

21 (4)

In (3) and (4), the solid directed edges form an example of a walk [4].

6
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Definition 7. A walk is a sequence of m edges of the form

x0 → x1 → x2 → · · · → xm,

where x0, x1, x2, . . . , xm are (not necessarily distinct) vertices, and xi → xj indicates that there is
an edge from xi to xj. If x0 = xm, then the walk is closed.

a

bc

d

e f

Figure 2: An example of a directed graph

For example, in Figure 2 we have a walk c → b → e → d → c → a. Note that if we remove the
edge c → a, we have a closed walk: c → b → e → d → c.

Definition 8. If a walk is composed of distinct edges and has distinct vertices, then it is called a
path. That is, in a path we have xi �= xj for 0 ≤ i < j ≤ m, except possibly for x0 = xm. In the
case where x0 = xm, the path is closed and usually referred to as a cycle or m-cycle.

In Figure 2, we have the path e → d → c → b and the 4-cycle e → d → c → b → e.
Shortly, we will see how this basic graph theory can help us describe minimal generating sets

of POI(n). Our results were first motivated by studying output results from a program written
using the programming language Groups, Algorithms, and Programming (GAP) [7]. The program
explicitly computed all possible generating sets for POI(n) for small integers n. Let us now describe
the main results we obtained.

3 Main Theorems

Our first result provides a necessary condition for a subset X ⊆ POIn−1(n) to be a minimal
generating set for POI(n).

Lemma 2. Let X be a subset of POIn−1(n) consisting of n elements that generate POI(n). Then
X contains (a) no two distinct R-related elements, (b) no two distinct L-related elements, and (c)
no partial identities.

Proof. We prove all three parts by way of contradiction. First, to prove part (a), we assume that
there are two R-related elements in X. Using Lemma 1, we deduce that for some i ∈ {1, 2, . . . , n},
the subset Ŝi is the domain for no elements in X. Let γ ∈ POIn−1(n) be any element such that

Dom(γ) = Ŝi. Write γ = (i, b). Since X is a generating set, then there exist ξ1, ξ2, . . . , ξk ∈ X such
that

γ = ξ1ξ2 · · · ξk.

7
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Clearly, each ξj must belong to POIn−1(n). Therefore, writing ξj = (xj1, xj2) for each j with 1 ≤
j ≤ k, we have

γ = (x11, x12)(x21, x22) · · · (xk1, xk2) = (i, b),

where xj2 = x(j+1)1 for each j with 1 ≤ j < k. It follows that i = x11, and thus, Dom((x11, x12)) =

Ŝi which is a contradiction.
Similarly, for part (b), assume X contains two L-related elements. Again by Lemma 1, there

is some subset Ŝi that no element in X has as its range. Let α ∈ POIn−1(n) be any element such

that Rng(α) = Ŝi. Write α = (a, i). Then there exist ξ1, ξ2, . . . , ξk ∈ X such that α = ξ1ξ2 · · · ξk.
Writing ξj = (xj1, xj2) as before, we have

α = (x11, x12)(x21, x22) · · · (xk1, xk2) = (a, i),

where xj2 = x(j+1)1 for each 1 ≤ j < k. It follows that i = xk2, which implies Rng((xk1, xk2)) = Ŝi,
which is a contradiction.

Finally, we prove part (c). Assume X contains a partial identity element, say ω = (a, a), which

fixes the elements of Ŝa. Choose any element γ = (a, b) ∈ POIn−1(n) with γ �= ω. Then, following
the notation above, γ can be expressed as

γ = ξ1ξ2 · · · ξk = (x11, x12)(x21, x22) · · · (xk1, xk2) = (a, b).

As above, we get a = x11. By part (a), the only element of X of the form (a, y) is the partial
identity (a, a). Therefore, it must be the case that (x11, x12) = ω. Hence,

γ = (a, a)(x21, x22) · · · (xk1, xk2).

Now we deduce that x21 = a, and we can repeat the same reasoning as above to conclude that
x22 = a. Therefore,

γ = (a, a)(a, a) · · · (xk1, xk2).

Proceeding in this way, we eventually have

γ = (a, a)(a, a) · · · (a, a) = (a, a) = ω,

a contradiction.

As a consequence of the proof of Lemma 2, observe that every Ŝi (for 1 ≤ i ≤ n) must be the
domain of some generator in a generating set POI(n). This therefore proves the following:

Corollary 1. Every generating set of POI(n) must contain at least n elements.

We are now ready to state and prove the central result of this paper.

Theorem 3. Let X be a subset of n elements of POIn−1(n) with no two distinct R-related elements,
no two distinct L-related elements, and no partial identities. Then X is a minimal generating set
for POI(n) if and only if the edges of ΩX form an n-cycle.

Proof. First, assume X is a minimal generating set for POI(n). By way of contradiction, suppose
that the edges of ΩX do not form an n-cycle. This implies we must have at least two smaller cycles,
say C1 and C2, of lengths n1 and n2, respectively. Let us choose an element (a, b) ∈ POIn−1(n),

8
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where a is a vertex of the n1-cycle C1 and b is a vertex of the n2-cycle C2. Since X is a generating
set, we can express (a, b) as a product of generators:

(a, b) = (x11, x12)(x21, x22) · · · (xk1, xk2).

However, since x11 = a is a vertex in C1, then x12 is also a vertex in C1, which implies (x11, x12) is
a directed edge in ΩX − C2. Similarly, since x12 = x21 is a vertex in C1 then x22 = x31 is a vertex
in C1 which implies (x21, x22) is a directed edge in ΩX − C2. Continuing this process, we find that
(xk1, xk2) is a directed edge in ΩX −C2, which is a contradiction to the fact that xk2 = b is a vertex
in C2. Hence, ΩX forms an n-cycle.

Now assume that the edges of ΩX form an n-cycle. To show that X is a generating set, let (a, b)
be an arbitrary element in POIn−1(n). Since the edges of ΩX form an n-cycle, then we have a cycle
of the form

x1 → x2 → · · · → xi−1 → a → xi+1 → · · · → xj−1 → b → xj+1 → · · · → xn → x1.

Clearly, there is a path from a to b; namely,

a → xi+1 → · · · → xj−1 → b.

Therefore, (a, b) can be generated by X as

(a, b) = (a, xi+1)(xi+1, xi+2) · · · (xj−1, b).

Once all the elements of POIn−1(n) − {id} are generated, there is a straightforward algorithm
for generating all of the elements of POIk(n) for k ≤ n − 2. We describe this algorithm here and
Example 9 following the proof will illustrate it.

First, it is easy to generate all partial identity elements of all ranks by simply multiplying
together the appropriate partial identities of rank n − 1. Now consider any element σ ∈ POIk(n)
for k ≤ n − 2. Let τ ∈ POIk(n) be a partial identity element with Dom(τ) = Dom(σ). Let
Rng(σ) = {a1, a2, . . . , ak} and Rng(τ) = {b1, b2, . . . , bk} with a1 < a2 < · · · < ak and b1 < b2 <
· · · < bk. We now conduct a series of steps that correspond to right-multiplication of τ by elements of
rank n−1 to replace the k-tuple [b1, b2, . . . , bk] with [a1, a2, . . . , ak] in the range. This is accomplished
by changing exactly one entry of the k-tuple at a time by exactly one number in such a way that
the increasing ordering of the entries of the k-tuple is maintained. To change bi to bi ± 1, we use
the element of rank n− 1 denoted in the pair notation γ = (bi ± 1, bi). A direct calculation verifies
that Dom(τγ) = Dom(τ) and Rng(τγ) = {b1, b2, . . . , bi−1, bi ± 1, bi+1, . . . , bk}. Therefore, we can
construct a finite series of elements γ1, γ2, . . . , γr belonging to POIn−1(n) such that

Dom(τγ1γ2 · · · γr) = Dom(τ) = Dom(σ)

and
Rng(τγ1γ2 · · · γr) = Rng(σ).

This implies that
σ = τγ1γ2 · · · γr. (5)

Since τ is a partial identity and each γi has rank n− 1, we can see from (5) that σ is generated by
elements in POIn−1(n). This proves that X is a generating set for POI(n), and since X contains
exactly n elements by assumption, Corollary 1 implies that X is a minimal generating set.

9
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Example 9. Let σ =

(
1 2 3 4 5 6

− − 1 5 6 −

)
∈ POI(6). Here, we start with the partial identity

τ =

(
1 2 3 4 5 6

− − 3 4 5 −

)
. Clearly, Dom(τ) = Dom(σ). We now carry out the series of steps

described in the algorithm in the proof of Theorem 3 to replace [3, 4, 5] with [1, 5, 6]. One way to
do this is via the replacements

[3, 4, 5] −→ [2, 4, 5] −→ [1, 4, 5] −→ [1, 4, 6] −→ [1, 5, 6].

According to the algorithm, these four steps can be accomplished by right-multiplication by the
elements

γ1 = (2, 3), γ2 = (1, 2), γ3 = (6, 5), γ4 = (5, 4).

We can easily compute that indeed we have

τγ1γ2γ3γ4 = σ.

Let us now illustrate some examples of Theorem 3.

Example 10. The set

X =




(
1 2 3 4

− 1 2 3

)
,

(
1 2 3 4

1 2 4 −

)
,

(
1 2 3 4

1 3 − 4

)
,

(
1 2 3 4

2 − 3 4

)

(1, 4) (4, 3) (3, 2) (2, 1)




forms a generating set for POI(4) since the edges of the graph ΩX form a 4-cycle. By composing
these edges, we can then generate all 16 edges of POI3(4) to get:

2

3

4

1

Figure 3: A graphical example of a generating set of POI(4)

Here, the solid directed arrows belong to the generating set, while the dotted directed arrows
represent the remaining elements of POI3(4).

10
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Example 11. The set X given by




(
1 2 3 4 5

1 2 4 5 −

)
,

(
1 2 3 4 5

1 2 3 − 4

)
,

(
1 2 3 4 5

2 3 − 4 5

)
,

(
1 2 3 4 5

1 − 2 3 5

)
,

(
1 2 3 4 5

− 1 3 4 5

)

(5, 3) (4, 5) (3, 1) (2, 4) (1, 2)





forms a generating set for POI(5) since the edges of the graph ΩX form a 5-cycle. From this 5-cycle,
we can generate the remaining 20 edges that correspond to the remaining 20 elements of POI4(5):

3

4

5

1

2

Figure 4: A graphical representation of a generating set of POI(5)

As in Example 10, the solid directed arrows belong to the generating set, while the dotted
directed arrows represent the remaining elements of POI4(5).

Example 12. The set X given by



(
1 2 3 4 5

1 2 4 5 −

)
,

(
1 2 3 4 5

1 2 − 3 4

)
,

(
1 2 3 4 5

2 3 4 − 5

)
,

(
1 2 3 4 5

− 1 3 4 5

)
,

(
1 2 3 4 5

1 − 2 3 5

)

(5, 3) (3, 5) (4, 1) (1, 2) (2, 4)




is not a generating set for POI(5) since ΩX forms two subcycles of the 5-cycle. By composing the
edges in these subcycles we only generate 13 out of the 25 edges of POI4(5), as shown in Figure 5.

11
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3

4

5

1

2

.

Figure 5: A graphical representation of a non-generating set of POI(5)

Theorem 4. POI(n) has (n− 1)! minimal generating sets.

Proof. From Theorem 3, we see that the number of minimal generating sets of POI(n) is equal to
the number of directed n-cycles that can be put on n vertices. It is easy to see that (n − 1)! such
directed n-cycles can be constructed.

Acknowledgments

I would like to thank the Department of Mathematics at California State University, Fullerton
for its support of this work, as well as my family and friends who supported me throughout the
process of this paper.

12

References

[1] U. Alvarez, On kth roots in semigroups of order-preserving partial permutations, Cal State Fullerton Dimensions,
(2015), 123–132.

[2] S. Annin, Hierarchy of efficient generators of the symmetric inverse monoid, Semigroup Forum, 55 (1997),
327–355.

[3] S. Annin, J. Maglione, Economical generating sets for the symmetric and alternating groups consisting of cycles
of a fixed length, J. Algebra Appl., 11 (2012).

[4] R.A. Brualdi, Introductory Combinatorics, Pearson, 2010.

[5] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups, American Mathematical Society, 1961.

[6] D.S. Dummit, R.M. Foote, Abstract Algebra, John Wiley and Sons, Inc., 2004.

[7] GAP 2017, The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.8.7, available online at
the URL: http://www.gap-system.org

[8] W.T. Hungerford, Abstract Algebra: An Introduction, Brooks/Cole, Cengage Learning, 2013.

13



135

On Applications of The AM-GM Inequality

Author: Sushanth Sathish Kumar
Advisor: Bogdan Suceava

Abstract 

The AM-GM inequality, which compares the arithmetic and geometric mean of a list of numbers, is one of the 
most foundational theorem in the subject of inequalities. Several complicated inequalities are consequences of this 
seemingly simple result. Not only does the AM-GM inequality aid in solving inequalities, it’s conditions for equality 
can also make it adept in solving complicated equations which cannot be solved directly. During the last several 
issues of the American Mathematical Monthly (AMM), which is a prestigious math journal read and edited by 
scholars and professionals from around the world, there several inequality problems. Of those, four could be solved 

by applying only the AM-GM inequality. These four problems will be the focus of this presentation.

ON APPLICATIONS OF THE AM-GM INEQUALITY

SUSHANTH SATHISH KUMAR

Abstract. The AM-GM inequality, which compares the arithmetic and geomet-
ric mean of a list of numbers, is one of the most foundational theorem in the
subject of inequalities. Several complicated inequalities are consequences of this
seemingly simple result. Not only does the AM-GM inequality aid in solving in-
equalities, it’s conditions for equality can also make it adept in solving complicated
equations which cannot be solved directly. During the last several issues of the
American Mathematical Monthly (AMM), which is a prestigious math journal read
and edited by scholars and professionals from around the world, there several in-
equality problems. Of those, four could be solved by applying only the AM-GM
inequality. These four problems will be the focus of this presentation.

1. Introduction

The origins of the theory of inequalities are related to the work of Augustin-Louis
Cauchy (August 21, 1789, Paris - May 23, 1857, Sceaux (near Paris)) In 1802, Cauchy
entered the École Centrale du Panthéon where, following Lagrange’s advice, he spent
two years studying classical languages. He took the entrance examinations for the
École Polytechnique in 1805 (at 16 years old) and the examiner Biot placed him sec-
ond. At the École Polytechnique he attended courses by Lacroix, de Prony, Hachette,
and was tutored in analysis by Ampère. Cauchy was one of the most knowledgeable
mathematicians in his generation. He noticed that something is missing from the
theory: besides his investigations of symmetric functions, he was much interested in
developing a theory comparing certain symmetric expressions. During his lifetime,
Cauchy wrote 789 mathematical papers, an incredible achievement.

We now present the main theorem.

Theorem 1.1 (AM-GM). Let a1, ..., an be a list of n positive real numbers. Then,
a1 + · · ·+ an

n
≥ n

√
a1...an.

Equality holds if and only if all the variables are equal.

Throughout this paper, we make use of the shorthand
∑

cyc f(a, b, c) to denote the
sum f(a, b, c) + f(b, c, a) + f(c, a, b).

2. Simple Applications

In this section we present some simple consequences of the AM-GM inequality to
ease the reader to the material in the following sections.

Example 2.1. If x1, x2, ..., xn are positive real numbers, prove that
x1

x2

+
x2

x3

+ ...+
xn−1

xn

+
xn

x1

≥ n,

the equality being valid only when x1 = x2 = ... = xn.
1
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Proof. Since:
x1

x2

· x2

x3

· ... · xn−1

xn

· xn

x1

= 1,

then,
x1

x2

+
x2

x3

+ ...+
xn−1

xn

+
xn

x1

≥ n.

Equality holds only when
x1

x2

=
x2

x3

= ... =
xn−1

xn

=
xn

x1

= 1,

which yields x1 = x2 = ... = xn. �

Although there are some arguably more beautiful ways to prove the following
lemma, we present the AM-GM method here to show how versatile and indispensable
the inequality is.

Lemma 2.2. Let a, b, c be three positive reals. Then,

bc+ ca+ ab ≤ a2 + b2 + c2.

Proof. By AM-GM,

bc ≤ b2 + c2

2
, ca ≤ c2 + a2

2
, ab ≤ a2 + b2

2
.

Adding up the inequalities yields the desired result. �

Finally, to wrap up the section we present a result that seems to lend itself to
a solution using calculus, but can be proved far more elegantly with the AM-GM
inequality.

Example 2.3. Prove that for any a > 1

ln a+ loga e ≥ 2.

Proof. Let us write

loga e =
ln e

ln a
=

1

ln a
.

Then,

ln a+ loga e =
ln a

1
+

1

ln a
.

Now Example 2.1 with n = 2 proves that the latter term is at least 2. �

3. An Inequality with Factorials

Problem 3.1. (AMM 12065) Proposed by Hojoo Lee, Seoul National University,
Seoul, South Korea. Let n be a positive integer, and let x1, ..., xn be a list of n positive
real numbers. For k ∈ {1, ..., n}, let yk = xk(n+ 1)/(n+ 1− k) and let

zk =
(k!)1/k

k + 1

(
k∏

j=1

yj

)1/k

.

Prove that the arithmetic mean of x1, ..., xn is greater than or equal to the arithmetic
mean of z1, ..., zn, and determine when equality holds.
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Proof. By AM-GM, we have

zk =
1

k + 1

(
k∏

j=1

jyj

)1/k

≤ 1

k(k + 1)

k∑
j=1

jyj =
k∑

j=1

j(n+ 1)xj

(n+ 1− j)k(k + 1)
.

Swapping the order of summation,
n∑

k=1

zk ≤
n∑

k=1

k∑
j=1

j(n+ 1)xj

(n+ 1− j)k(k + 1)
=

n∑
j=1

n∑
k=j

j(n+ 1)xj

n+ 1− j

(
1

k
− 1

k + 1

)

Therefore, we have
n∑

k=1

zk =
n∑

j=1

j(n+ 1)xj

n+ 1− j

n∑
k=j

(
1

k
− 1

k + 1

)
=

n∑
j=1

xj,

which was what we wanted. Equality, by AM-GM, occurs when y1 = 2y2 = · · · = nyn.
Equivalently, we must have

xk =
C(n+ 1− k)

k(n+ 1)

for a constant C. �

4. Inequality on the Altitudes and Exradii of a Triangle

Problem 4.1. (AMM 12068) Proposed by D. M. Bătineţu-Giurgiu, "Matei Basarab"
National College, Bucharest, Romania, and Neculai Stanciu, "George Emil Palade"
School, Buzău, Romania. Consider a triangle with altitudes ha, hb, and hc and corre-
sponding exradii ra, rb, and rc. Let s, r, and R denote the triangle’s semiperimeter,
inradius, and circumradius, respectively.
(a) Prove

hb + hc

ha

r2a +
hc + ha

hb

r2b +
ha + hb

hc

r2c ≥ 2s2.

(b) Prove
rb + rc
ra

h2
a +

rc + ra
rb

h2
b +

ra + rb
rc

h2
c ≥

4s2r

R
.

Proof. Letting K denote the area of the triangle, we see that ha = 2K/a, and

r2a =
K2

(s− a)2
=

s(s− b)(s− c)

s− a
,

by Heron’s formula. It follows that the left-hand-side of the inequality is
∑
cyc

1
b
+ 1

c
1
a

s(s− b)(s− c)

s− a
=

∑
cyc

a

(
1

b
+

1

c

)
s(s− b)(s− c)

s− a
.

Thus, we wish to show
∑
cyc

(
as(s− b)(s− c)

b(s− a)
+

as(s− b)(s− c)

c(s− a)

)
≥ 2s2.

Since the sum is cyclic we may rewrite it as follows,
∑
cyc

(
as(s− b)(s− c)

b(s− a)
+

bs(s− a)(s− c)

a(s− b)

)
.
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Applying AM-GM to the two terms in parentheses,
∑
cyc

(
as(s− b)(s− c)

b(s− a)
+

bs(s− a)(s− c)

a(s− b)

)
≥

∑
cyc

2s(s− c) = 2s2,

which solves the first part. For part (b) note that

rb + rc
ra

h2
a =

K
s−b

+ K
s−c

K
s−a

h2
a =

s− a

s− b
h2
a +

s− a

s− c
h2
a.

Therefore the left-hand-side is
∑
cyc

(
s− a

s− b
h2
a +

s− a

s− c
h2
a

)
=

∑
cyc

(
s− a

s− b
h2
a +

s− b

s− a
h2
b

)
.

Applying AM-GM to the terms in parentheses again,
∑
cyc

(
s− a

s− b
h2
a +

s− b

s− a
h2
b

)
≥

∑
cyc

2hahb =
∑
cyc

8K2

ab
.

Recalling the formulas

R =
abc

4K
and rs = K,

we can simplify the right-hand-side as
∑
cyc

8K2

ab
=

8K2(a+ b+ c)

abc
=

2K(a+ b+ c)

R
=

4s2r

R
.

which is precisely the right-hand-side of the original inequality. �

5. Another Geometric Inequality

Problem 5.1. (AMM 12103) Proposed by George Apostolopoulos, Messolonghi,
Greece. Let a, b, and c be the side lengths of a triangle with inradius r and circum-
radius R. Let ra, rb, and rc be the exradii opposide the sides of length a, b, and c,
respectively. Prove

1

2R3
≤ ra

a4
+

rb
b4

+
rc
c4

≤ 1

16r3
.

Proof. Denote by K and s the area and semiperimeter of the triangle, respectively.
By the Ravi Substitution, there are positive reals x, y, and z such that a = y + z,
b = z + x, and c = x+ y. It follows, K =

√
xyz(x+ y + z) and s = x+ y + z.

Recalling the well-known formulas

R =
abc

4K
, r =

K

s
, ra =

K

s− a
,

we obtain,

R =
(x+ y)(y + z)(z + x)

4
√
xyz(x+ y + z)

, r =

√
xyz

x+ y + z
, ra =

√
yz(x+ y + z)

x
.

Hence, the given inequality is equivalent to

32(xyz)3/2(x+ y + z)3/2

(x+ y)3(y + z)3(z + x)3
≤

∑
cyc

1

(y + z)4

√
yz(x+ y + z)

x
≤ (x+ y + z)3/2

16(xyz)3/2
.
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For the right hand side, note that by AM-GM, we have (y + z)4 ≥ 16y2z2. Thus,

∑
cyc

1

(y + z)4

√
yz(x+ y + z)

x
≤

∑
cyc

1

16y2z2

√
yz(x+ y + z)

x

=
1

16

∑
cyc

√
x+ y + z

xy3z3

=
1

16

∑
cyc

x
√
x+ y + z√
x3y3z3

=
(x+ y + z)3/2

16(xyz)3/2
.

To prove the left hand side, rewrite the sum as follows

∑
cyc

1

(y + z)4

√
yz(x+ y + z)

x
=

∑
cyc

16

(y + z)4

√
x3y3z3(x+ y + z)

256x4y2z2
.

By AM-GM, we may estimate 256x4y2z2 = (16x2y2)(16x2z2) ≤ (x + y)4(x + z)4.
Therefore, we have

∑
cyc

1

(y + z)4

√
yz(x+ y + z)

x
≥

∑
cyc

16
√

x3y3z3(x+ y + z)

(y + z)4(x+ y)2(x+ z)2

=
16
√

x3y3z3(x+ y + z)

(x+ y)2(y + z)2(z + x)2

∑
cyc

1

(y + z)2

Recalling Lemma 2.2, we obtain
∑
cyc

1

(y + z)4

√
yz(x+ y + z)

x
≥

16
√
x3y3z3(x+ y + z)

(x+ y)2(y + z)2(z + x)2

∑
cyc

1

(x+ y)(x+ z)

=
16
√

x3y3z3(x+ y + z)

(x+ y)2(y + z)2(z + x)2

∑
cyc

y + z

(x+ y)(x+ z)(y + z)

=
32(x+ y + z)

√
x3y3z3(x+ y + z)

(x+ y)3(y + z)3(z + x)3

=
32(xyz)3/2(x+ y + z)3/2

(x+ y)3(y + z)3(z + x)3
,

which was what we wanted. �

6. Conditional Geometric Inequality

Problem 6.1. (AMM 12098) Proposed by Leonard Giugiuc, Drobeta Turnu Sev-
erin, Romania, and Kadir Altintas, Emirdağ, Turkey. Suppose that the centroid of
a triangle with semiperimeter s and inradius r lies on its incircle. Prove s ≥ 3

√
6r,

and determine conditions for equality.

Proof. Let the side lengths of the triangle be a ≥ b ≥ c, and K its area. Denote by
G and I the centroid and incenter of the triangle, respectively. By scaling, we may
assume that c = 1. Note that this implies that a+ b ≥ 2c = 2.
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From the barycentric coordinates

G =
1

3
�A+

1

3
�B +

1

3
�B and I =

a

a+ b+ c
�A+

b

a+ b+ c
�B +

c

a+ b+ c
�C,

it is tedious, but straightforward to derive

GI2 =
1

9(a+ b+ c)2
‖(b+ c− 2a) �A+ (c+ a− 2b) �B + (a+ b− 2c) �C‖2

=
−a3 − b3 − c3 + 2a2b+ 2ab2 + 2b2c+ 2bc2 + 2c2a+ 2ca2 − 9abc

9(a+ b+ c)

=
−a3 − b3 − 1 + 2a2b+ 2ab2 + 2b2 + 2b+ 2a+ 2a2 − 9ab

9(a+ b+ 1)
.

Additionally, from Heron’s formula and the well-known r = K/s,

r2 =
K2

s2
=

(a+ b− 1)(b+ 1− a)(1 + a− b)

4(a+ b+ 1)

=
−a3 − b3 − 1 + a2b+ ab2 + a2 + b2 + a+ b− 2ab

4(a+ b+ 1)
.

Since G lies on the incircle, we have GI2 = r2. Setting the two expressions equal to
each other, and simplifying yields

5a3 + 5b3 + 5− 18ab = a2b+ ab2 + a2 + b2 + a+ b

⇐⇒ (a+ b+ 1)(5a2 + 5b2 − 6ab− 6a− 6b+ 5) = 0

⇐⇒ 5a2 + 5b2 + 5 = 6ab+ 6a+ 6b.(1)

We claim that a + b ≤ 5. Indeed, adding 10ab to both sides and applying AM-GM
gives

5(a+ b)2 + 5 = 16ab+ 6a+ 6b ≤ 4(a+ b)2 + 6(a+ b).(2)

Consequently, (a + b − 1)(a + b − 5) = (a + b)2 − 6(a + b) + 5 ≤ 0, which gives the
desired a+ b ≤ 5. To show s ≥ 3

√
6r, it suffices to show that

s2 ≥ 54r2 =
54K2

s2
=

54(s− a)(s− b)(s− c)

s
.

Hence, it is enough to establish

(a+ b+ 1)3 ≥ 54(a+ b− 1)(1− a+ b)(a− b+ a).

To see this, note that

(1− a+ b)(1− b+ a) = 1− a2 − b2 + 2ab

=
1

5
(5− (5a2 + 5b2) + 10ab)

=
1

5
(10 + 4ab− 6a− 6b)

≤ 1

5
(10 + (a+ b)2 − 6(a+ b)),

where we have use the AM-GM inequality and (1). For brevity, write µ = a + b.
Then, we wish to show that

(µ+ 1)3 ≥ 54

5
(µ− 1)(µ2 − 6µ+ 10) ⇐⇒ (5− µ)(49µ2 − 148µ+ 109) ≥ 0.
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But since 2 ≤ µ ≤ 5, this is evident. Equality holds above if and only if µ = 5.
Therefore, (2) must actually be an equality, which implies 4ab = (a + b)2, or that
a = b = 5/2. Rescaling the triangle, we see that equality holds if and only if the sides
are in a 2 : 5 : 5 ratio. �
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In the present note we discuss a problem inspired by the reference [2], we
generalize it, and from this idea we derive a result on series. In our investigation
we pursue first an elementary solution, similar to the argument from [2] (in
the first problem, Solution 1). Interestingly enough, an argument by using
Sterling formula is possible, and we present it below in the second solution.
This discussion leads to an interesting interpretation: the geometric mean of all
the real numbers in a positive interval [m,m+1], for m ∈ (0,∞). The question
which motivated our inquiry is the following.

Problem 1. Define

an =
2n∏
k=1

(
1 +

k

2n

)
.

Evaluate limn−→∞ an and limn−→∞
an+1

an

Solution 1: First, remark that an > 2n. Indeed, by noting that

a2n =
2n∏
k=1

(
1 +

k

2n

)2

=
2n∏
k=1

(
1 +

k

2n

)(
1 +

2n+ 1− k

2n

)
.

By using the estimate
(
1 + k

2n

) (
1 + 2n+1−k

2n

)
> 1 + k+2n+1−k

2n > 2, it follows
that a2n > 22n, as claimed above. Therefore limn−→∞ an > limn−→∞ 2n = ∞,
and in consequence an approaches infinity. To evaluate the second limit, write

an = (4n)!
(2n)!(2n)2n , and note that

an+1

an
=

(4n+4)!
(2n+2)!(2n+2)2n+2

(4n)!
(2n)!(2n)2n

=
(4n+ 1)(4n+ 2)(4n+ 3)(4n+ 4)

(2n+ 1)(2n+ 2)3
(
1 + 1

n

)2n .

When n−→∞, we have (4n+1)(4n+2)(4n+3)(4n+4)
(2n+1)(2n+2)3 −→

(
4
2

)4
= 16. By using the

properties of Euler’s classical sequence, limn−→∞
((
1 + 1

n

)n)2
= e2. Therefore,

the second limit is 16
e2 , as desired.

1
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Solution 2: The idea is to rewrite the limit as

an =

2n∏
k=1

(2n+ k)

(2n)2n
=

(4n)!

(2n)!(2n)2n
.

By Stirling’s formula (see e.g. [3]), we have the approximations (4n)! ∼
√
8πn

(
4n
e

)4n
and (2n)! ∼

√
4πn

(
2n
e

)2n
. Therefore, we may write

an ∼
√
8πn

(
4n
e

)4n
√
4πn

(
2n
e

)2n
(2n)2n

=
√
2

(
4

e

)2n

.

Observe that since 4/e > 1, we have that limn−→∞ an = limn−→∞
√
2
(
4
e

)2n
=

∞. To evaluate the second limit, write

lim
n−→∞

an+1

an
= lim

n−→∞

√
2
(
4
e

)2n+2

√
2
(
4
e

)2n =
16

e2
.

Problem 2. Let m be a fixed positive integer, m ≥ 1. Define

an =

mn∏
k=1

(
1 +

k

mn

)
.

Evaluate limn−→∞ an and limn−→∞
an+1

an

Solution 1: We claim that an > 2mn/2. Indeed, writing

a2n =

mn∏
k=1

(
1 +

k

mn

)(
1 +

mn− k + 1

mn

)

and making the estimate
(
1 + k

mn

) (
1 + mn−k+1

mn

)
> 1+ k

mn+
mn−k+1

mn > 2 yields

a2n > 2mn, as desired. Thus, limn−→∞ an > limn−→∞ 2mn/2 = ∞, which shows

that an diverges. Observe that an = (2mn)!
(mn)!(mn)mn , and write

lim
n−→∞

an+1

an
= lim

n−→∞

(2mn+2m)!
(mn+m)!(mn+m)mn+m

(2mn)!
((mn)!(mn)mn

= lim
n−→∞

(2mn+ 1) · · · (2mn+ 2m)

(mn+ 1) · · · (mn+m)(mn+m)m
(
mn+m
mn

)mn .

As n−→∞, we have (2mn+1)···(2mn+2m)
(mn+1)···(mn+m)(mn+m)m−→22m = 4m. Euler’s limit now

gives limn−→∞
(
mn+m
mn

)mn
= limn−→∞

((
1 + 1

n

)n)m
= em. Therefore, the sec-

ond limit is
(
4
e

)m
.

2
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Solution 2: Let us rewrite an as

an =

mn∏
k=1

(mn+ k)

(mn)mn
=

(2mn)!

(mn)!(mn)mn
.

Stirling’s Formula now gives (2mn)! ∼
√
4πmn

(
2mn
e

)2mn
and (mn)! ∼

√
2πmn

(
mn
e

)mn
.

Therefore,

an ∼
√
4πmn

(
2mn
e

)2mn

√
2πmn

(
mn
e

)mn
(mn)mn

=
√
2

(
4

e

)mn

.

Since 4/e > 1, we again derive that an diverges. For the second limit we obtain,

lim
n−→∞

an+1

an
= lim

n−→∞

√
2
(
4
e

)m(n+1)

√
2
(
4
e

)mn =

(
4

e

)m

.

Proposition 1. Let m be a fixed positive integer, m ≥ 1, and let an =
∏mn

k=1

(
1 + k

mn

)
.

Then the series defined by

∞∑
n=1

a−1
n =

∞∑
n=1

{
mn∏
k=1

(
1 +

k

mn

)}−1

is convergent.

Proof: It suffices to show that limn−→∞
an

an+1
< 1, by the ratio test. From

the second problem, we know that limn−→∞
an+1

an
=

(
4
e

)m
. Therefore, we have

lim
n−→∞

an
an+1

=
(e
4

)m

< 1,

as desired.
With this preparation, we are ready now to provide the following interpre-

tation.

Proposition 2. Given a fixed constant m > 0, the geometric mean of all the
numbers in the real interval [m,m+ 1] is the following

lim
n−→∞

(
n∏

k=1

(
m+

k

n

))1/n

.

Solution: In order to evaluate the above stated limit, taking logarithms
yields,

ln lim
n−→∞

(
n∏

k=1

(
m+

k

n

))1/n

= lim
n−→∞

(
1

n

n∑
k=1

ln

(
m+

k

n

))
= lim

n−→∞

n∑
k=1

1

n
ln

(
m+

k

n

)
.

3
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This is a Riemann integral, and we may write

lim
n−→∞

n∑
k=1

1

n
ln

(
m+

k

n

)
=

∫ m+1

m

lnxdx

= x lnx− x
∣∣∣
m+1

m

= (m+ 1) ln(m+ 1)−m lnm− 1

Hence, the original limit evaluates to

lim
n−→∞

(
n∏

k=1

(
m+

k

n

))1/n

= e(m+1) ln(m+1)−m lnm−1 =
(m+ 1)m+1

e ·mm
.

The next problem assesses when a product is convergent, and it naturally
pertains to the context developed by our discussion.

Corollary 1. [1] For a > 0, evaluate

lim
n−→∞

n∏
k=1

(
a+

k

n

)
.

Solution: The key idea is to write the limit as

lim
n−→∞

n∏
k=1

(
a+

k

n

)
= lim

n−→∞



(

n∏
k=1

(
a+

k

n

))1/n


n

.

Indeed, applying the result of Problem 3 yields

lim
n−→∞



(

n∏
k=1

(
a+

k

n

))1/n


n

= lim
n−→∞

(
(a+ 1)a+1

e · aa

)n

Thus, the limit is

lim
n−→∞

n∏
k=1

(
a+

k

n

)
=





0 if (a+1)a+1

e·aa < 1

1 if (a+1)a+1

e·aa = 1

∞ if (a+1)a+1

e·aa > 1
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Abstract  

We study an old conjecture of Maxwell concerning the critical points of an electrostatic potential 
with finitely many point charges under the condition that the point charges are collinear. If the 
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the case where there are four point charges, we investigate the conjecture in a special case.

MAXWELL’S CONJECTURE ON FOUR COLLINEAR POINT
CHARGES
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Abstract. We study an old conjecture of Maxwell concerning the critical points of
an electrostatic potential with finitely many point charges under the condition that
the point charges are collinear. If the outermost charge has different sign to all others,
we show there are finitely many critical points. In the case where there are four point
charges, we investigate the conjecture in a special case.

1. Introduction

1.1. Background. A vector field E on a domain Ω ⊆ R3 is said to be conservative if
E = ∇φ for some function φ : Ω → R. These occur throughout physics and engineering.
A point charge is defined as a charge q ∈ R\{0} located at a point x ∈ R3. Given
charges qi located at distinct xi, i = 1, . . . , n, we define Ω := R3\{xi, i = 1, . . . , n}
and the electrostatic (or Newtonian) potential φ : Ω → R via

φ(x) :=
n∑

i=1

qi
‖x− xi‖

.

Its gradient E = ∇φ is the electrostatic field generated by the point charges.

Example 1.1. A standard example is the vector field

G(x) = G(x, y, z) =

〈
−x

(x2 + y2 + z2)3/2
,

−y

(x2 + y2 + z2)3/2
,

−z

(x2 + y2 + z2)3/2

〉
,

which is conservative as G = ∇φ, where φ : R3\{0} is the potential energy defined as

φ(x, y, z) =
1√

x2 + y2 + z2
.

This paper is concerned with the following classical question, raised by Maxwell [3].
If there are finitely many distinct point charges, how many points are there in Ω where
the vector field vanishes? At such points x no force is felt by an observer, and we have
E(x) = ∇φ(x) = 0. Thus x is a critical point of φ. Maxwell conjectured that if there
are n point charges the number of critical points, if finite, is at most (n− 1)2.

This is still largely open. It is not even known in general under what conditions
the number of critical points will be finite. Maxwell’s conjecture has a long history,
and generalizes work of Gauß on electrostatic potentials in R2. Recent progress on
related problems is outlined in [2] and [5]. In R3, most work to date has focused on

1
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the case where the potential is a Morse function, which means all the critical points
are nondegenerate. In fact, in Section 32 of [4] Cairns and Morse study this situation
as an application of Morse Theory. They prove a Theorem which applies when all the
charges lie on a line (or more generally form a so-called minimal configuration) which
realizes a lower bound on the number of critical points via the Morse Inequalities.

In [6], Tsai proves the conjecture for the case where n = 3 under some assumptions
on the charges. Tsai proves that there are either two, three or four critical points if
they are isolated, and describes exactly how all these cases occur. For the collinear
case (i.e. all charges are on the same line in R3), he proves

Theorem 1.2. Assume three point charges are located at (1,0,0),(-1,0,0) and (u, v, 0)
with charges s3, k3, 1 respectively. For s = k = 1, there are two critical points for φ if
v = 0, u �= ±1. For s = k = −1, there are two critical points for φ if v = 0, ‖u‖ > 1,
and there is a circle of critical points for φ if v = 0 and |u| < 1.

In the case where v = 0 and |u| < 1 this means there are infinitely many critical
points. This result establishes the conjecture of Maxwell for the case of three collinear
point charges with equal charges. In this paper we extend Tsai’s work to consider the
case where there are four or more collinear point charges, under the assumption one
of the outermost point charges has a different sign to all the others. The assumption
all point charges are collinear enable us to reduce this to a one-dimensional problem
which is possible to solve using techniques from calculus and classical results from the
study of roots of real polynomials. As pointed out to us by G. Jennings, S. Raianu
and W. Horn, in fact there is an easy calculus argument (see Proposition 2.4) which
establishes Maxwell’s conjecture in the collinear case when the charges are all positive.
This also covers the first case of Tsai’s theorem with n = 3 and makes his theorem
redundant in this case.

The main results are as follows.

Theorem A. If there are n collinear point charges so that the outermost charge has
opposite sign to all others, then φ has at most 2(n2 − 1) critical points.

In particular, this number is finite, but this is not enough to establish Maxwell’s
conjecture. When n = 4, this shows the number of critical points is at most 30. Our
main theorem improves this significantly in a special case.

Theorem B. Suppose there are four collinear point charges such that −q1 = q2 = q3 =
q4. Then φ has at most twelve critical points.

This is not optimal: the arguments presented here can be adapted to various other
configurations of charges but the general conjecture remains intractable even in the
collinear case.When n = 4, we have (4− 1)2 = 9 and so Theorem B does not establish
Maxwell’s conjecture in this case. If one additionally positions the charges in special
locations along the line it is possible to verify the conjecture in many special cases.
The reader might note that a natural situation to investigate include when n = 3 and
the collinear charges satisfy the corresponding assumption −q1 = q2 = q3. Then the
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problem reduces to finding roots of quartics, which of course can be analysed exactly
since there is an explicit formula for finding the roots of a quartic. Our goal in this
work however was to investigate a test case where the degree of the polynomials is too
large to directly find the roots.

Acknowledgments We thank CSUF Mathematics Department for producing a sup-
portive undergraduate research environment, the Louis Stokes Alliance for Minority
Participation for supporting D. Nguyen, and in particular G. Jennings, S. Raianu and
W. Horn who pointed out to us the elementary argument shown in Proposition 2.4 for
the situation when all charges are positive.

2. Preliminaries

2.1. Initial Setup and Generalities. We briefly review some material from multi-
variable calculus which will be required. Take a function F : Rn → Rm, written in
components as

F (x1, . . . , xn) = (f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fm(x1, . . . , xn))

for fi : Rn → R. Then the Jacobian is the (m× n) matrix

dF =

(
∂fi
∂xj

)

ij

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. Note that if m = 1, the Jacobian is a 1× n row matrix
which is exactly ∇F .

Definition 2.1. A map F : R3 → R3 is said to be a change of coordinates if the
Jacobian dF has non-zero determinant.

Proposition 2.2. Critical points are invariant under changes of coordinates.

Proof. Letting x = (x, y, z) be the original coordinate system, and x̃ = F (x) be the
new coordinate system. Then φ(x̃) := φ ◦ F−1(x̃), so the chain rule states that

dφ(x̃) = (dφ(x))(dF−1)

Since F is a change of coordinates, (dF−1) = (dF )−1 and so is nonsingular (i.e. it has
non-zero determinant). Hence dφ(x̃) = 0 if, and only if, dφ(x) = 0. �

We assume throughout the point charges are located at distinct points collinear
on the x-axis L. Choosing a parametrization of L we label the point charges in the
order we meet them as we vary the parameter. The first point charge, located at x1,
is called the outermost point charge, and we change coordinates if necessary to ensure
this happens at (0, 0, 0) with all subsequent charges on the positive x-axis.

Proposition 2.3. Suppose that either (i) all qi have the same sign or (ii) q1 has the
opposite sign to q2, . . . , qn. Then the critical points of φ also lie on L.
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Proof. Choosing suitable coordinates (i.e. scaling and rotating L appropriately), the
point charges may be assumed to lie at the points (x1, 0, 0) = (0, 0, 0) and (xi, 0, 0),
i = 2, . . . , n. Thus the potential function is given by

φ(x) =
n∑

i=1

qi√
(x− xi)2 + y2 + z2

, .

To find the gradient of φ(x), taking the derivatives with respect to x,y and z yields :

φx =
n∑

i=1

−qi(x− xi)

[(x− xi)2 + y2 + z2]
3
2

φy = y
n∑

i=1

−qi

[(x− xi)2 + y2 + z2]
3
2

φz = z
n∑

i=1

−qi

[(x− xi)2 + y2 + z2]
3
2

.

(i) Setting φy = φz = 0, it is apparent that y = z = 0 and the result is established
since the sum on the right-hand-side consists of non-zero terms each with the same
sign.
(ii) Setting φy = φz = 0, it is apparent that y = z = 0 and the result is established
unless

n∑
i=1

−qi

[(x− xi)2 + y2 + z2]
3
2

= 0 =⇒
n∑

i=1

−qix

[(x− xi)2 + y2 + z2]
3
2

= 0.

Feeding this into the equation φx = 0 and noting that x1 = 0 yields
n∑

i=2

qixi

[(x− xi)2 + y2 + z2]
3
2

= 0

Since xi ∈ (0,∞) and all the qi with i ≥ 2 have the same sign, this is a contradiction.
Hence y = z = 0 and the result is established. �

In case (i), the following elementary argument establishes precisely the number of
critical points and implies Maxwell’s conjecture holds.

Proposition 2.4. Suppose there are n collinear point charges with all charges having
the same sign. Then φ has n− 1 critical points.

Proof. Assume, without loss of generality, all the qi are positive. Applying Proposition
2.3, the critical points of φ lie on the x-axis L. Since y = z = 0 we can rewrite φ(x) as
a function of x along, yielding

φ(x) =
n∑

i=1

qi
|x− xi|

.
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Assume x ∈ (xj−1, xj), where j = 2, . . . , n. Then

φ(x) =

j−1∑
i=1

qi
x− xi

+
n∑

i=j

qi
xi − x

φ′(x) =

j−1∑
i=1

−qi
(x− xi)2

+
n∑

i=j

qi
(xi − x)2

φ′′(x) =

j−1∑
i=1

2qi
(x− xi)3

−
n∑

i=j

2qi
(xi − x)3

> 0.

Hence φ′′(x) > 0 on (xj−1, xj) and thus has at most one critical point on the interval
(xj−1, xj). However,

lim
x→x−

j−1

φ′(x) = − lim
x→x+

j

φ′(x) = ∞

so the intermediate value theorem implies there is at least one critical point on this
interval, and hence there is exactly one critical point on each interval between the
two critical points. This yields n − 1 critical points. It is easy to see there are no
critical points if x < x1 = 0 or x > xn as φ′ �= 0 on these intervals, and the claim is
established. �

Of course, since n− 1 < (n− 1)2, this implies Maxwell’s conjecture.

2.2. Preliminaries for the Proof of Theorem B. A key ingredient will be the
following classical result concerning the real roots of polynomials. For the purposes
of this paper, a polynomial will always be assumed to have real coefficients and be
written with the powers in descending order, e.g. x6 − 5x4 + 2x− 3.

Lemma 2.5. (Descartes’ Rule of Signs) The number of positive real roots of a poly-
nomial p(x) is either the number of sign changes between consecutive (nonzero) coef-
ficients, or is less than this by an even natural number. The number of negative real
roots can be found by applying this rule to p(−x).

The proof is via induction. See [1] for further details. Important special cases are
when the number of sign changes are either zero or one. If it is zero, we know the
polynomial has no roots, and if it is one then it follows that there is exactly one root.

3. Proof of Theorem A

Proof of Theorem A. We follow the proof from Proposition 2.4. There are n + 1 in-
tervals. On each interval we solve φ′(x) = 0 by taking common denominators. This
results in a polynomial of degree 2(n− 1) whose roots are precisely the critical points
of φ. So on each interval there are at most 2(n− 1) roots and the result follows.

�
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4. Proof of Theorem B

4.1. Setup. In this section we will restrict to the case where n = 4 and assume the
outermost charge q1 is located at the origin with −q1 = q2 = q3 = q4. Moreover without
loss of generality we assume −q1 = 1 and all the other charges lie on the positive x-
axis. Applying Proposition 2.3 (ii) we know that φx = 0 and y = z = 0. Following
Proposition 2.4, we know x = (x, 0, 0) is a critical point of φ(x) with x ∈ (xj−1, xj) if,
and only if,

φ′(x) =

j−1∑
i=1

−qi
(x− xi)2

+
4∑

i=j

qi
(xi − x)2

= 0.

Here j = 2, . . . , 4. When x ∈ (−∞, 0) and x ∈ (x4,∞) this formula is also correct
if suitably interpreted. To simplify the algebra further, we will rescale if necessary so
that x2 = 1. This rescaling is a change of coordinates in R3 and so does not affect the
computation of the number of critical points. To make the polynomials which follow
easier to read, we will relabel x3 = α and x4 = β.

Now, we notice that the sign of each term on the right-hand-side will depend on
the position of x. As we have seen in the proof of Theorem A, the sign distribution
will generate a different polynomial of degree at most six, yielding a bound of at most
30 roots. We now will break the argument into cases, depending on the position of x
with respect to the charges.

(1) Suppose x < 0. Then x is a critical point of φ if, and only if,

−1

x2
+

1

(x− 1)2
+

1

(x− α)2
+

1

(x− β)2
= 0

with x < 0.
(2) Suppose 0 < x < 1. Then x is a critical point of φx(x) if, and only if,

1

x2
+

1

(x− 1)2
+

1

(x− α)2
+

1

(x− β)2
= 0.

Hence there are no critical points of φ is this interval and the analysis of this
case is finished.

(3) Suppose 1 < x < α. Then x is a critical point of φ if, and only if,

1

x2
− 1

(x− 1)2
+

1

(x− α)2
+

1

(x− β)2
= 0

with α < x < β.
(4) Suppose α < x < β. Then x is a critical point of φ if, and only if,

1

x2
− 1

(x− 1)2
− 1

(x− α)2
+

1

(x− β)2
= 0

with α < x < β.
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(5) Suppose x > β. Then x is a critical point of φ if, and only if,

1

x2
− 1

(x− 1)2
− 1

(x− α)2
− 1

(x− β)2
= 0

with x > β.

4.2. Analysis of Cases (1), (3), (4), and (5). It is necessary to consider combina-
tions of the following polynomials:

f(x) = (x− 1)2(x− α)2(x− β)2

g(x) = x2(x− α)2(x− β)2

r(x) = x2(x− 1)2(x− α)2

s(x) = x2(x− 1)2(x− β)2.

Expanding these polynomials yields

f(x) = x6 − ux5 + vx4 − tx3 + qx2 − jx+ α2β2

g(x) = x6 − (2α + 2β)x5 + (α2 + 4αβ + β2)x4 − (2α2β + 2αβ2)x3 + α2β2x2

r(x) = x6 − (2α + 2)x5 + (α2 + 4α + 1)x4 − (2α2 + 2α)x3 + α2x2

s(x) = x6 − (2β + 2)x5 + (β2 + 4β + 1)x4 − (2β2 + 2β)x3 + β2x2,

where

u = 2α + 2β + 2

v = β2 + 4αβ + 4β + α2 + 4α + 1

t = 2αβ2 + 2β2 + 2α2β + 8αβ + 2β + 2α2 + 2α

q = α2β2 + 4αβ2 + β2 + 4α2β + 4αβ + α2

j = 2α2β2 + 2αβ2 + 2α2β.

With this notation, the polynomials are as follows. For Case (1), the rational function
has a zero precisely when (−f + g + r+ s)(x) = 0 with x negative, which simplifies to

2x6−(2α+2β+2)x5+(α2+β2+1)x4+8αβx3−(4αβ2+4α2β+4αβ)x2+jx−α2β2 = 0.

For Case (3), the rational function has a zero precisely when f − g + r + s = 0,
which simplifies to

0 =2x6 − (2α + 2β + 6)x5 + (β2 + 8β + α2 + 8α + 3)x4

− (4β2 + 8αβ + 4β + 4α + 4α2)x3

+ (4αβ2 + 4α2β + 4αβ + 2α2 + 2β2)x2

− jx+ α2β2

with 1 < x < α.
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For Case (4), the rational function has a zero precisely when f − g − r + s = 0,
which simplifies to

0 =2(α− β − 1)x5 + (β2 − α2 + 8β + 1)x4 − (4β2 + 8αβ + 4β)x3

+ (4αβ2 + 2β2 + 4α2β + 4αβ)x2 − jx+ α2β2

with α < x < β.
Finally in Case (5) the polynomial has a zero precisely when f − g − r − s = 0,

which is (up to a minus) the same case as Case 1. Hence we seek to solve

2x6−(2α+2β+2)x5+(α2+β2+1)x4+8αβx3−(4αβ2+4α2β+4αβ)x2+jx−α2β2 = 0

but now with x > β.

4.3. Analysis of Case 1. We claim there is one negative real root of the polynomial
z = −f + g + r + s. This must have one negative root by the Intermediate Value
Theorem, since z(0) < 0 and z(x) → ∞ as x → −∞. In fact, if we apply Descartes
rule of signs to estimate the number of negative zeros, we obtain that z(−x) is

2x6+(2α+2β+2)x5+(α2+β2+1)x4− 8αβx3− (4αβ2− 4α2β+4αβ)x2− jx−α2β2.

This has one sign change so this proves there is exactly one negative root of z as
required.

4.4. Analysis of Case (3). Applying Descartes rule of signs to the polynomial z(x) =
(f−g+r+s)(x) does not yield any information in this case: it tells us there are either
six, four, two or zero positive roots of the polynomial (and no negative roots). So we
conclude there are at most six critical points of φ with x ∈ (1, α).

4.5. Analysis of Case (4). Applying Descartes’s rule of signs to

z(x) = 2(α− β − 1)x5 + (β2 − α2 + 8β + 1)x4 − (4β2 + 8αβ + 4β)x3 + (4αβ2 + 2β2

+ 4α2β + 4αβ)x2 − jx+ α2β2

we obtain there are at either five, three or one positive real roots. Hence, in a worst-case
scenario, there are five roots in (1, α).

4.6. Analysis of Case (5). Here the argument presented in Case (1) does not work as
Descartes’ rule of signs is not immediately applicable, as the reader can check directly.
To remedy this, we apply the change of coordinates

x → x̃ = β − (β − α)x, ỹ = y, z̃ = z.

The reader may easily check the determinant of the corresponding Jacobian is α−β �= 0,
so it is invertible and hence this transformation is indeed a change of coordinates. From
Proposition 2.2, being a critical point is independent of coordinate system. Computing
in the new coordinate system, φ(x̃) is the same polynomial as Case (1), but in the x̃
variable (with α replaced with α̃ etc.). To see this, note that β < x < ⇐⇒ x̃ < 0.
In these coordinates, φ has a critical point if, and only if, the polynomial z(x̃) =
(f + g+ r− s)(x̃) = 0 with x̃ < 0. Notice the minus sign now lies before the last term
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since the point charge with opposite sign now lies at β̃. Expanding this polynomial in
the same fashion as above yields

z(x̃) = 2x̃6 − (6α̃ + 2β̃ + 2)x̃5 + (3α̃2 + β̃2 + 8α̃β̃ + 8α̃ + 1)x̃4

− (4α̃2β̃ + 4α̃β̃2 + 4α̃2 + 8α̃β̃ + 4α̃)x̃3

+ (2α̃2β̃2 + 4α̃β̃2 + 4α̃2β̃ + 4α̃β̃ + 2α̃2)x̃2

− j̃x̃+ α̃2β̃2.

Solving z(x̃) = 0 with x̃ < 0 yields, upon applying Descartes’ rule of signs in the same
fashion, that there is no critical point in this interval.

4.7. Conclusion of the Proof.

Proof of Theorem B. This now follows immediately from combining established facts.
There is one critical point in (−∞, 0), none in (0, 1) and (β,∞), at most five in (α, β),
and at most six in (1, α). Hence there are at most twelve critical points. �

5. Final Remarks

We conclude with some final remarks. The obvious way to improve the bound of 13
we obtain is to apply Sturm’s lemma to precisely calculate the number of roots inside
each interval, but the algebra becomes very difficult. This is a project for the future.

At first glance, it is somewhat curious that Descartes’ rule of signs does not work
in Case (5), but after a change of coordinates it can be made to work. This can be
explained by observing that the change of coordinates presented changes the direction
of the positive x-axis. To illustrate, consider the case where there are two charges in
(0, β), and three in (β,∞). Then there are five positive roots in the original coordi-
nate system on the positive x-axis, but only two in the x̃ coordinates. This example
illustrates that it is possible to change the number of positive and negative roots by
applying changes of variables.

It is also natural to ask how much further the collinear case can be investigated.
We hope to take this project up into the future. In particular, it is clear that the
assumption all the charges lie in a line allow us to reduce the equations to finding
roots of polynomials of higher degree, and Descartes’ Rule of Signs is a useful tool to
help us compute the number of roots.
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Ordinary differential equations (ODEs) are an important mathematical tool for modelling in physics.
In addition to being fluent with the symbols and structures of mathematics, physicists entering the
advanced undergraduate sequence of courses are also expected to encode physical meaning into
said symbols/structures. Through ungraded pre-instruction surveys in a math methods course, it
is evident that this expectation is not an easy one. Previous research by Hyland has shown that
while students may have been exposed to the theoretical aspects of ODEs in previous math courses
(especially the mechanics of obtaining a solution), instructor intervention is needed to transform this
theoretical knowledge into a form that is useful for physics. Through a theoretical model of student
thinking developed by Tall and Vinner known as the concept image framework, we analyzed three
semester’s worth of these pre-instruction surveys and found that students who utilized a strategy
that did not focus on the formal function definition of an ODE tended to be unproductive towards
completing physics ODE tasks. This implies that an instructional shift towards a greater emphasis
of general mathematical principles might encourage more productive strategies in using ODEs to
model physical systems.

I. INTRODUCTION

Ordinary differential equations are ubiquitous
throughout physics due to their ability to de-
scribe/model dynamic physical systems. This ubiq-
uity means that any student taking advanced under-
graduate physics courses (upper-division) should be
comfortable with

(a) setting up an ODE for a given physical system

(b) analyzing the structure of an ODE

(c) determining a method of solution for the ODE.

This paper will explore how students at CSUF who
are entering the upper-division use these three vital
skills to solve novel physics problems.

A. Formal Definition of an ODE

For most students, an ODE and its resulting so-
lution is defined rather succinctly as such:

∗ a fung@csu.fullerton.edu
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“A DE is any equation that involves one
or more derivatives of an unknown function.
The variable which this function depends on
is called the independent variable while
the resulting outputted value is the depen-
dent variable. The unknown function be-
comes a solution to the DE if it takes a form
such that when substituted into the DE pro-
duces an identity.”

B. Course Structure

Students at CSUF are initially exposed to ODEs
in second-semester introductory calculus (MATH
150B). As is necessary for an introductory course,
150B focuses heavily on grouping ODEs into classes
(separable, first-order linear, etc.) and develop-
ing/practicing an algorithmic method of solution for
these classes.
ODEs are further explored in a hybrid differen-

tial equations/linear algebra semester-long course
(MATH 250B) as well as a dedicated upper-division
ODE course (MATH 310). However, these are not
prerequisites and most CSUF physics majors have
not taken either upon entering the upper division.
In order to augment and re-frame this initial ex-

posure to ODEs in a fashion that is more useful to
physics, physics majors are required to take a math
methods course (PHYS 300) before embarking on
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most upper-division courses. Unfortunately, ODEs
are only a subset of the mathematics PHYS 300 at-
tempts to review/introduce; instructional time typ-
ically ranges from 2-3 weeks for most semesters.

C. Different Presentations: An Example from
Classical Mechanics

A thorough knowledge of ODEs is often not nec-
essary to succeed in the introductory CSUF physics
sequence. As an example, in the textbook used for
introductory mechanics (PHYS 225), the position
function x(t) of a simple harmonic oscillator (SHO)
is developed as such:

1. A particle of mass m that is subjected only to
a linear restoring force (i.e., by Hooke’s law)
kx is described by the following equation of
motion.

ma = −kx (1)

where a is the acceleration of the block.

2. This gives rise to the following second order
differential equation.

d2x

dt2
= −ω2x (2)

where ω is the angular frequency of the oscil-
lating mass.

3. The solution to this differential equation is the
following position function

x(t) = A cos (ωt+ φ) (3)

which is commonly referred to as the sinu-
soidal function.

In the scope of an introductory course, elimination
of the method of solution from which (2) is derived
from (1) is necessary in order to ensure enough time
is allocated to exploring the physical implications
of the sinusoidal solution. However, in an upper-
division classical mechanics course, it is important to
spend some time on the method of solution. For ex-
ample, the textbook used in CSUF’s upper-division
mechanics course (PHYS 320) spends nearly seven
pages going through the method of solution as well
as rewriting the sinusoidal solution into equivalent
exponential and phase-shifted forms.

For many students entering the upper-division,
such a transition is not trivial. This observation is
consistent with recent work done by Hyland [1] who
found that while students who have largely been ex-
posed to the theoretical aspects of ODEs in previous
courses, e.g., the mechanics of obtaining a solution,
the process of using ODEs to build a physical model
required instructor intervention.

II. THEORETICAL FRAMEWORK:
CONCEPT IMAGE

In order to present student understanding of
ODEs in a rigorous fashion, i.e., one that is intelligi-
ble to the larger physics education research (PER)
community, it is often appropriate to do so with
respect to a theoretical framework—an idealized
model of student thinking. A framework which
has been used to present student understanding
on other mathematical topics such as unit vectors
(Schermerhorn and Thompson) [2] and Fourier
transforms (Mays and Loverude) is the concept
image framework.

A. Overview of Framework

Initially developed as a model of student un-
derstanding in the mathematics education research
community by Tall and Vinner the framework pro-
poses that

– a student’s collective understanding of a topic
may be modeled as a concept image.

– the concept image, in its totality, is often
abstract/difficult to describe and subject to
change via outside sources.

– External events that task the student with ap-
plying a mathematical concept, e.g., an activ-
ity or exam question will cause a portion of
the student’s concept image to be activated or
evoked.

– Ideas from the evoked concept image (concept
definitions) are then used to complete the
task at hand. If these ideas are incompati-
ble with the task’s definition (formal defini-
tion), then the student is unable to complete
the task.

– Each student’s concept image and the result-
ing concept image is unique, i.e., based on in-
dividual experiences both inside and out of the
current curriculum.

B. Productive and Unproductive Definitions:
A Simple Example

As a simple application of this framework, con-
sider the topic of the limit of a function. A question
about the long-term behavior of a RC circuit might
evoke in a student the idea that a limit is “making
t large for a given function”. If the student were to
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apply the same concept image towards a task that
required the student to approximate an equation by
allowing the mass to be infinitesimally small, i.e.,
m → −∞, the student would be unable to complete
the task.
It is important to stress here that the student’s

concept definition of the limit is not “wrong”. In
fact, it is accurate as long as the task requires allow-
ing the independent variable of a function to tends
toward infinity. A concept definition that is not ap-
propriate for a certain task is simply unproductive.
However, this concept definition (while not strictly
adhering to a rigid formal definition) might prove
productive in many other scenarios.

III. METHODOLOGY

Through the concept image framework, it is possi-
ble to not only identify productive student strategies
for a particular task, but discover strategies that are
more generalizable. More specifically, we were inter-
ested in whether or not students who used strategies
that were more strongly associated with the formal
function definition of an ODE were more productive.

A. Data Set

The data for our project comes entirely ungraded
quizzes (UQs) from three sections of PHYS 300:
Spring 2018 (N = 13), Fall 2018 (N = 13), and
Spring 2019 (N = 14). For all three sections, the
UQs were administered with no formal instruction
past some surface-level discussion about the impor-
tance of ODEs in physics. This is done as a coun-
termeasure to prevent unnecessary biasing towards
a particular strategy. The tasks in the actual UQs
varied slightly between semester, so some tasks will
have a larger population than others.
We manage to identify student strategies and clas-
sify them as productive or unproductive by develop-
ing an emergent coding scheme, i.e., assigning a
label or code to a student response. This allows for
the identification of how common or uncommon a
certain strategy is relative to other data sets despite
differences in task question.

B. Survey Tasks

We grouped the tasks in these three sections of
UQs into three broad categories.

1. Identification of the Unknown Function

The following set of tasks asked students to iden-
tify the unknown function, i.e., the independent and
dependent variables in a differential equation. In
math classes, identifying these variables is usually
not a difficult task as y typically represents a de-
pendent variable and x or t the independent. These
tasks are designed to see if students were able to
carry out the same process when these symbols car-
ried physical meaning or contextualized via a physi-
cal model.
For example, in the UQ for the Fall 2018 section,

students were given the equation of motion for a
spring-mass system that is oscillating in a medium
that provides a linear drag force and the following
equation of motion

mẍ = −kx− bẋ (4)

and were asked to identify an appropriate de-
contextualized form out of three possible choices—
the expected one being

a2y
′′ + a1y

′ + a0y = 0 (5)

Alternatively, as in the case of the Spring 2019 sec-
tion, students were required to rewrite a given phys-
ical model in terms of a de-contextualized DE. For
example, in one task students were given a slightly
modified version of (4) and asked to rewrite it into
a DE of the form

d2y

dt2
+ α

dy

dt
+ βy = 0 (6)

Both of these tasks are similar as they required the
student to identify the independent and dependent
variable first before being able to take the requisite
derivatives.

2. Tasks Involving Functional Relationships

Another set of tasks revolved around using a given
ODE to describe a plausible physical scenario. In all
tasks, students were free to define what each variable
meant physically. For example, in the 2018 UQ, stu-
dents were given the following DE

dI

dt
= −Iλ (7)

where we have deliberately chosen some unconven-
tional variables. In order to construct a physical
model, the student would’ve had to recognize the
functional relationships shown by the DE. Specifi-
cally for (7), the student would’ve needed to rec-
ognize that the physical model needed to have a
quantity that is negatively proportional to its rate
of change.

Page 3
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FIG. 1. Graph for the Solutions Task

3. Interpretation of Solutions

Our final set of tasks involved looking at stu-
dent’s strategies with interpretation the solution of
an ODE. Here students were given a solution to a DE
describing a particle falling downwards in a medium
that provides a linear drag force.

v(t) = vter +Ae−t/τ (8)

where vter is the terminal speed of the particle.
Alongside (8), students were also presented with a
graph of the solution (Figure 1) Students were then
asked to comment on the long-time behavior of the
particle and asked to explain their reasoning. The
purpose of this task is to identify whether students
would choose to explain physical phenomena via a
function or via another method such as a graph when
given the option.

IV. RESULTS

Throughout all three tasks, we found that strate-
gies that involved the usage of the formal function
definition were the most productive. While strate-
gies that relied on other means worked for a localized
task, these strategies were often not generalizable.
Through our emergent coding scheme we identified
several examples where this localized strategy can
cause student confusion.

A. Pattern-Matching

A common strategy among student for the first
set of tasks was to “pattern-match”—finding analo-
gous mathematical structures such as similar-order
derivatives and using these structures to classify
DEs. This strategy proved productive for tasks
where the equation of the physical model heavily
resembled the decontextualized equation (for exam-
ple, patter-matching worked well with relating (4)

and (5)) (Figure 2) This is not a controversial claim

FIG. 2. Pattern-matching works well for equations where
constants and functions were clearly delineated relative
to the decontextualized equation.

as in the timed environment the UQ was given in,
pattern-matching is a significantly faster strategy
to employ than identifying what the independent
and dependent variables were. Students who em-
ployed this strategy for significantly more compli-
cated equations, i.e., with more constants that re-
quired algebraic rearrangement found it to be un-
productive (Figure 3). As figure 2 shows, pattern-

FIG. 3. Pattern-matching was unproductive when mul-
tiple constants.

matching results in the derivative of the indepen-
dent variable with respect to the dependent y′ being
falsely identified as L(dI /dt) with the additional
constant being “mixed in”.

In contrast, a function-based strategy would’ve
first identified I as a variable that is dependent on
t and probably would not have had led to the same
error as shown in Figure 3.

B. Familiar Symbolization

A common strategy we found regarding the sec-
ond set of tasks was to judge the validity of the given
ODE based on the presence of familiar symbols that
were encountered in previous study. For example,
many students responded that (7) was probably a
DE describing “something to do with wavelength”
without specifying further.

We conjecture that this response was probably not
related to the actual functional relationships present
in (7). Rather, the response was motivated by the
presence of λ—a common symbol used for wave-
length in the physical sciences. Another example
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of the strategy of familiar symbolization being un-
productive for these set of tasks is when students
were asked to identify a plausible physical scenario
for the following DE

d2θ

dt2
= −αθ (9)

A common response among students was similar to
that in Figure 4. The presence of θ—commonly as-

FIG. 4. Familiar symbolization often prompted students
to respond with a brief mention of circular motion.

sociated with rotational motion—seemed to prompt
many of these responses. Again, a function-based
approach would’ve probably seen that (9) is actually
the same equation as the DE describing our SHO (1).

C. Interpretation of a Solution

For our final set of tasks, we found that when
given the option to describe the long-term behavior
of a falling particle, students overwhelmingly chose
to use the provided graph over taking the limiting
case of the provided solution (8). While not unpro-
ductive for the current task, the response rate could
be an indication of a preference for using graphs and
physical intuition to model a physical system rather
than a mathematical function approach.

V. CONCLUSION: NOVICES VS. EXPERTS

The responses from our data set are in line with
work done by PER researchers Chi, Feltovich, and
Glaser [5] who identified that introductory students
(novices) tend to interpret a problem based on
more immediate salient structures (surface fea-
tures). Most students in our data set have shown
this by gravitating away from the formal function
definition in favor of surface features such as the
presence of certain derivatives or familiar symbols
when approaching many of these tasks. More prac-
ticed physicists (experts) however tend to approach
problems by reducing it to more fundamental prin-
ciples. A question of further research would be
whether or not expert physicists regularly invoke the
formal function definition of the ODE when produc-
tively solving these tasks. In order to confirm this,

we will have to move beyond written responses in
lieu of formal interviews.

VI. IMPLICATIONS FOR INSTRUCTION

Our data set implies that strategies that evoke
the formal function definition of an ODE allow for
the successful resolution of these tasks. In terms of
instruction, these observations serve as an early indi-
cation that math method courses such as PHYS 300
should more greatly emphasize ODEs not as sepa-
rate classes of decontextualized math problems that
may be solved via a prerecorded algorithm but as the
mathematical relationship between a function and
its derivatives.
Further, upper-division courses should not assume

that student mastery of solving decontextualized
ODEs will translate well into problems requiring
ODEs in a physical context. Allocating more time
to demonstrating how ODEs are used in modeling
a physical system might encourage more productive
function-based strategies.

VII. REFERENCES

1. D. Hyland, Investigating students’ learning of
differential equations in physics, PhD Thesis,
Dublin City University, 2018.

2. B.P. Schermerhorn and J.R. Thompson, pre-
sented at the Physics Education Research Con-
ference 2017, Cincinnati, OH, 2017.

3. M. Mays and M.E. Loverude, presented at the
Physics Education Research Conference 2018,
Washington, DC, 2018.

4. D. Tall and S. Vinner, Educ. Stud. Math. 12,
151 (1981).

5. M. Chi, P.J. Feltovich, & R. Glaser (1981).
Categorization and representation of physics
problems by experts and novices. Cognitive
Science, 5(2), 121–152.

VIII. ACKNOWLEDGEMENTS

This research was supported in part by the
National Science Foundation under Grant Nos.
PHY#1406035 and PHY#1912660 as well as the
Black Family Foundation. The views in this paper
are the authors’ and do not necessarily reflect the
view of either organization.

Page 5



163

Examining Student Understanding of Matrix Algebra and Eigentheory

Author: Pachi Her
Advisor: Dr. Michael E. Loverude
California State University, Fullerton
Department of Physics 

	 As part of a project involving research on student use of mathematics in upper division physics, we conducted a study on the 
student understanding of matrix algebra in the context of a mathematical methods course for physics majors. We studied student 
written responses to three free-response exam questions to reach our conclusions. Each question was organized in accordance 
to applicable skills needed to solve these questions. Our data suggests that the root of student difficulty in constructing a matrix 
equation from a given set of systems of equations derived from their struggle to comprehend and interpret the mathematical 
language. Along with this difficulty, students often misused and misinterpreted the meanings of variables; for example confusing 
one variable such as the eigenvalue for another, the frequency. In conclusion, the misinterpretation of variables and difficulty 
translating physical systems to mathematical equations correlate to the student comprehension of matrix algebra and in a physics 
context.

Examining Student Understanding of Matrix Algebra and Eigentheory

Pachi Her∗ and Michael Loverude†
Department of Physics, California State University, Fullerton

As part of a project involving research on student use of mathematics in upper division physics, we con-
ducted a study on the student understanding of matrix algebra in the context of a mathematical methods course
for physics majors. We studied student written responses to three free-response exam questions to reach our
conclusions. Each question was organized in accordance to applicable skills needed to solve these questions.
Our data suggests that the root of student difficulty in constructing a matrix equation from a given set of sys-
tems of equations derived from their struggle to comprehend and interpret the mathematical language. Along
with this difficulty, students often misused and misinterpreted the meanings of variables; for example confusing
one variable such as the eigenvalue for another, the frequency. In conclusion, the misinterpretation of variables
and difficulty translating physical systems to mathematical equations correlate to the student comprehension of
matrix algebra and in a physics context.

I. INTRODUCTION

Mathematics is a major tool used in physics, and it assists
in structuring the framework of which a physical system ex-
ists and operates. A commonly used mathematical branch is
linear algebra, which encompasses concepts such as vectors,
matrices, and linear equations. In this study, we examined
student understanding of matrix algebra and eigentheory.

A. Previous Works

Several studies have consistently observed that linear alge-
bra is a difficult subject for students to apply. In the Physics
Education Research community, there is limited research on
student understanding of linear algebra applications. A ma-
jority of the studies mainly focused on the context of quantum
mechanics [1,2]. Therefore, we will be referencing most of
the studies done in the math education community, RUME.

Drawing from other research, Sabella and Redish identified
from various research papers that the difficulty in learning lin-
ear algebra is due to the fact that in these courses, students
may “master the algorithmic skills. . . but lack a concep-
tual understanding. . . and (of) how to apply linear algebra
concepts to physical systems”[3]. The Linear Algebra Cur-
riculum Study Group, formed by Carlson et al, is a group that
focuses on improving linear algebra courses to increase the
student understanding of the subject [4].

Previous studies by Larson and Zandeih investigated mul-
tiple ways of interpreting matrix equations [5] and using the
framework Larson created [6] of the different interpretations
of matrix multiplication. The students in their study suc-
cessfully solved matrix multiplication but utilized a different
method in their solutions.

In addition to studies that investigated how students inter-
pret matrix equations, studies have been conducted on how
students form symbolic reasoning of eigentheory. Henderson
et al compared student comprehension between numerical val-
ues and symbols in the form of the eigenequation. They iden-
tified three categories of student reasoning: (1) students who
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used superficial algebraic cancellation, (2) students who cor-
rectly solved the system and correctly interpret their result,
and (3) students who correctly solved the system and incor-
rectly interpreted their results [7]. Another study showed that
students tend to focus on the calculation procedures instead of
grasping the underlying meaning of what was being calculated
and modeled [8]. The results of these studies can foreshadow
the struggle of applying matrix algebra and eigentheory for
students in physics courses.

B. Motivation for Study

As stated in the previous section, there are only a few stud-
ies of linear algebra in various contexts of physics, other than
quantum mechanics. Thus, further investigation of student un-
derstanding of matrix algebra and eigentheory in the context
of physics can prove to be valuable to researchers, instruc-
tors, and students. It will be able to provide information on
areas that students struggle the most and emphasize areas of
instruction that should be improved given that the mathemat-
ics education community has provided through their research
of student difficulty in linear algebra.

II. RESEARCH METHODS

The first step to our study was gathering the student writ-
ten responses from an upper division physics course known
as Survey of Mathematical Physics. This sophomore-junior
level course teaches students various mathematical concepts
observed in physics. Enrolled students have already taken
and passed Calculus III and therefore, already have familiarity
with some of the concepts taught in class. A majority of the
students enrolled in the course were either physics majors or
minors. An important factor to consider in this study was that
the students were not required to take a linear algebra course
before enrolling, thus their prior knowledge of linear algebra
could be limited.

We investigated three exams questions from two different
semesters, Fall 2017 (N =14) and Spring 2019 (N = 14). Two
of the questions came from a final exam given in Spring 2019,
and the other in Fall 2017. The questions were chosen based
on their similarity of tasks.
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As part of a project involving research on student use of mathematics in upper division physics, we con-
ducted a study on the student understanding of matrix algebra in the context of a mathematical methods course
for physics majors. We studied student written responses to three free-response exam questions to reach our
conclusions. Each question was organized in accordance to applicable skills needed to solve these questions.
Our data suggests that the root of student difficulty in constructing a matrix equation from a given set of sys-
tems of equations derived from their struggle to comprehend and interpret the mathematical language. Along
with this difficulty, students often misused and misinterpreted the meanings of variables; for example confusing
one variable such as the eigenvalue for another, the frequency. In conclusion, the misinterpretation of variables
and difficulty translating physical systems to mathematical equations correlate to the student comprehension of
matrix algebra and in a physics context.

I. INTRODUCTION

Mathematics is a major tool used in physics, and it assists
in structuring the framework of which a physical system ex-
ists and operates. A commonly used mathematical branch is
linear algebra, which encompasses concepts such as vectors,
matrices, and linear equations. In this study, we examined
student understanding of matrix algebra and eigentheory.

A. Previous Works

Several studies have consistently observed that linear alge-
bra is a difficult subject for students to apply. In the Physics
Education Research community, there is limited research on
student understanding of linear algebra applications. A ma-
jority of the studies mainly focused on the context of quantum
mechanics [1,2]. Therefore, we will be referencing most of
the studies done in the math education community, RUME.

Drawing from other research, Sabella and Redish identified
from various research papers that the difficulty in learning lin-
ear algebra is due to the fact that in these courses, students
may “master the algorithmic skills. . . but lack a concep-
tual understanding. . . and (of) how to apply linear algebra
concepts to physical systems”[3]. The Linear Algebra Cur-
riculum Study Group, formed by Carlson et al, is a group that
focuses on improving linear algebra courses to increase the
student understanding of the subject [4].

Previous studies by Larson and Zandeih investigated mul-
tiple ways of interpreting matrix equations [5] and using the
framework Larson created [6] of the different interpretations
of matrix multiplication. The students in their study suc-
cessfully solved matrix multiplication but utilized a different
method in their solutions.

In addition to studies that investigated how students inter-
pret matrix equations, studies have been conducted on how
students form symbolic reasoning of eigentheory. Henderson
et al compared student comprehension between numerical val-
ues and symbols in the form of the eigenequation. They iden-
tified three categories of student reasoning: (1) students who
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used superficial algebraic cancellation, (2) students who cor-
rectly solved the system and correctly interpret their result,
and (3) students who correctly solved the system and incor-
rectly interpreted their results [7]. Another study showed that
students tend to focus on the calculation procedures instead of
grasping the underlying meaning of what was being calculated
and modeled [8]. The results of these studies can foreshadow
the struggle of applying matrix algebra and eigentheory for
students in physics courses.

B. Motivation for Study

As stated in the previous section, there are only a few stud-
ies of linear algebra in various contexts of physics, other than
quantum mechanics. Thus, further investigation of student un-
derstanding of matrix algebra and eigentheory in the context
of physics can prove to be valuable to researchers, instruc-
tors, and students. It will be able to provide information on
areas that students struggle the most and emphasize areas of
instruction that should be improved given that the mathemat-
ics education community has provided through their research
of student difficulty in linear algebra.

II. RESEARCH METHODS

The first step to our study was gathering the student writ-
ten responses from an upper division physics course known
as Survey of Mathematical Physics. This sophomore-junior
level course teaches students various mathematical concepts
observed in physics. Enrolled students have already taken
and passed Calculus III and therefore, already have familiarity
with some of the concepts taught in class. A majority of the
students enrolled in the course were either physics majors or
minors. An important factor to consider in this study was that
the students were not required to take a linear algebra course
before enrolling, thus their prior knowledge of linear algebra
could be limited.

We investigated three exams questions from two different
semesters, Fall 2017 (N =14) and Spring 2019 (N = 14). Two
of the questions came from a final exam given in Spring 2019,
and the other in Fall 2017. The questions were chosen based
on their similarity of tasks.
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TABLE I. Description of each skill along with an example from a student’s written response for Question 1, Fall 2017

Solving physics problems generally requires a series of
steps and skills before reaching a solution. The Physical-
Mathematical Model created by Uhden et al, displays three
skills that students use when solving math- integrated physics
problems [9]. These skills distinguish the relationship be-
tween structural skills and technical skills, hence the split of
the two graphs as shown in Figure 1. Structural skills involve
the conceptual understanding of the physics mathematically,
whereas technical skills involve the application of mathemat-
ical operations.

The three skills, mathematization, interpretation, and tech-
nical operation, are described based on the degree of math-
ematization, or the level of math language the skill can ac-
quire. For example, the mathematization skill is the ability of
interpreting and categorizing a given physical system math-
ematically; in this study, it would be translating the systems
of equations that describe the springs system of two masses
into a matrix equation. This skill requires the ability to un-
derstand what the system of equations is describing and trans-
form them into a matrix equation that also translates into the
same system (normal modes). One important thing to note is
that the students were not asked to construct the equations of
motions instead, were already given them. Thus, the degree of
mathematization for this skill had started in the middle, then
increasing as the students perform the construction of the ma-
trix equation. Table I provides a more in-depth description of
each skill with a student example representing each one.

We used this model as a guidance to code our questions,
classifying each question with a skill. This coding scheme
helped us locate the students’ strengths and weaknesses in

their understanding of these mathematical tools.

FIG. 1. Representation of the Physical-Mathematical Model created
by Uhden et al.

A. Question Design

Before explaining the design of each question, we will in-
troduce two equations that students were expected to use for
solving these questions: (1) the eigenequation and (2) the
characteristic equation. As discussed further below, the stu-
dents were asked to construct a matrix equation and relate it
to the eigenequation. This relationship demonstrates which el-
ements from the matrix equation corresponds to the elements
in the eigenequation, consequently, forming an understanding
of how the physical system works mathematically. The char-
acteristic equation involves several procedures such as finding
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the determinant of the operation inside the parenthesis, that
the students had to perform first, and then factor out lambda
to determine its value(s).

Âx = λx (1)

det(Â− λÎ)x = 0 (2)

1. Question 1: Two masses attached to springs

Two masses attached to springs is a common question given
in a classical mechanics course. In this question, students
were to observe the two normal modes system with a given
a set of equations of motion. Question 1 was made up of three
parts. In part (i), the students had to translate the system of
equations into a matrix equation; in part (ii), they had to inter-

pret the physical meaning of the column vector,
(
x1

x2

)
, and in

part (iii), solve for the eigenvalue problem for the frequencies
of the two normal modes.

We identified that part (i) incorporated students’ mathema-
tization skills, part (ii) incorporating interpretation, and part
(iii) both technical operation and interpretation. The math-
ematization in part (i) is activated when students have to inter-
pret the given equations of motions mathematically, and then
create a new mathematical equation (matrix) that would de-
scribe the same physical system. Interpretation plays a par-
tial role when students apply mathematization, where they
have to properly interpret the meaning of each element in the
eigenequation and connect them to the elements given in the
system of equations. Identifying the interpretation skill in part
(ii) was easy as it directly asked students for the physical in-

terpretation of the column vector
(
x1

x2

)
.

For part (iii), students had to apply technical operation
when solving for the eigenvalue using the characteristic equa-
tion (Equation 2). After factoring out lambda, the students had
to interpret this eigenvalue by recognizing what it described
which was, mω2

k , in order to find the frequencies, ω, of the
two normal modes.

It is crucial for students to successfully answer part (i), as
parts (ii) and (iii) could be difficult to solve and understand in

FIG. 2. Original Question 1

the absence of correctly mathematizing the systems of equa-
tions into a matrix equation. This dependency between the
parts led to the development of Questions 2 and 3, where parts
(i) and (iii) were split into two separate questions.

2. Question 2: Solve eigenvalue problem to determine frequencies

Similar to Question 1 part (iii), Question 2 asked students to
find the frequencies of the two normal modes. But instead of
having students construct a matrix equation, they were given
one. We also identified this question incorporating both tech-
nical operation and interpretation as it also addresses students
to utilize the characteristic equation and decipher what the
eigenvalue corresponds to.

FIG. 3. Original Question 2

3. Question 3: Translate system of equations into a matrix
equation

Question 3 is similar to Question 1 part (i), where it asked
students to observe a physical system with a given system of
equations, and transform it into a matrix equation. Instead of
observing two masses connected by springs, the students had
to observe a couple LC circuit. It is important to note that prior
to this exam, the students had practiced applying matrix alge-
bra and eigentheory exclusively on springs but not on other
systems. Although the physics context is different, the proce-
dure of translating the system of equations describing the LC
circuit into a matrix equation is the same as for question 1.

FIG. 4. Original Question 3

III. RESULTS AND DISCUSSION

Our data show that students tend to struggle more with the
structural skills than the technical skills. Questions 1 and 3
provide evidence of students struggling in applying mathema-
tization to a physical system. Classifying the elements of the
physical system into mathematical terms can be difficult as it
entails conceptual understanding of what each element in the
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TABLE II. Description of each skill along with an example from a student’s written response for Question 1, Fall 2017

system represents, physically and mathematically. We also
saw student difficulty with problems that involve symbolic an-
swers rather than numerical as seen in Questions 1 and 3.

We observed the similarities and differences between the
tasks of each question and the students’ responses. Question
1 part (i) was compared to Question 3, and Question 1 part
(iii) to Question 2. Part (ii) of Question 1 was observed by
itself since it was the only unique question out of the three.

The percentages in Table II define the number of students
who successfully applied the corresponding skills to each
question. The number of points that the students received for
each question was partially considered in determining whether
or not they applied the skills. The data from Table I implied
that students struggle the most in applying mathematization
and interpretation more so than technical operation. Com-
paring the percentages between interpretation and technical
operation, Question 1 part (iii) has a 20 percent difference
and Question 2, a 13 percent difference. These percent differ-
ences distinguish the students’ performances of applying the
two skills. The consistency of the technical operation having
a higher percentage show that students were capable of ap-
plying the characteristic equation and solve for the eigenvalue
but, struggled in interpreting that the eigenvalue was not the
frequency. When students were given the matrix equation in
Question 2, their interpretation increased by 12 percent as it
was more recognizable to decipher the elements in the matrix
equation with the elements in the eigenequation, thus resulted
a higher success rate in finding the frequencies.

The results for Question 1 part (i) and Question 3 show how
students implement the eigenequation for different types of
physical systems. We mentioned in the previous section that
these two questions have similar tasks but one dealing with
normal modes and the other with LC circuits. Despite the pro-
cedure being the same for constructing the matrix equation,
there was a decrease in performance from Question 1 part (i)
to Question 3. We believe that the decrease is due to chang-
ing the physical system to one where students were not famil-
iar with in terms of practice. Students have practiced similar
problems to Question 1 through homework assignments and
in-class activities, but not for LC circuits.

The responses in Question 3 showed that the students strug-
gled in recognizing that the coupled LC circuit is a normal
mode system thus, having a similar procedure as the prob-
lem for two masses on springs. The students’ performance for
Question 3 decreased by 14 percent in comparison to Ques-
tion 1 part (i). This could possibly tell us that students tend
to think that with a different physical system, there involves

a different method of solving. Figure 5 displays two student
written responses for both questions. These two responses in
a way, are similar in such that they are both missing impor-
tant elements from the eigenequation, but differ by how they
constructed their answers.

FIG. 5. A comparison of two student’s written responses for Ques-
tion 1 part (i) and Question 3, respectively.

For Question 1 part (ii), the success rate was high. More
than half of the students were able to correctly interpret the
physical meaning of the column vector. One student wrote,

“The motion of the blocks m1 and m2,
(

1cm
−2cm

)
means that

we moved block 1, 1 cm above its equilibrium and block 2, 2
cm below its equilibrium.” 79 percent of the students wrote
similar interpretations.

Another issue we saw when examining the student re-
sponses was how students handled with the symbols in the
problems. One student wrote for Question 2, “ Im not sure
where to go from here. too many variables than im used to in
an eigenvalue matrix problem.”, suggesting that the symbols
were what hindered his performance in finding the eigenvalue.
Figure 4 shows an example of a student misinterpreting the
second order derivative as a variable rather than an operation.

FIG. 6. Student response for Question 3 (LC circuit). The student
misinterpreted the second order derivative as a variable rather than
an operation.

Problems that contain more symbols than numerical values
in addition to asking questions that require mathematization
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and interpretation, can potentially generate confusion for stu-
dents on how to utilize and comprehend the information given
to them, as seen in Questions 1 and 3. Students are fluent in
technical operations, as we saw in Question 1 part (iii) and
Question 2—where a majority of the students correctly used
the characteristic equation to solve for the eigenvalue. How-
ever, it is important to note that the application of technical
operations had been implanted in most of the students’ edu-
cation careers; using various mathematical operations to cal-
culate values has consistently appear in a majority of math
courses. This observation further validates the initial specula-
tion presented. Our data show that the students in this study
had a difficult time conceptually applying matrix algebra and
eigentheory in physics.

IV. CONCLUSIONS

By utilizing the Physcial-Mathematical Model, we were
able to identify and better correlate the student responses to
their understanding of matrix algebra and eigentheory. Identi-

fying which skills students struggle applying the most helped
us associate the challenges these concepts hold. The results
insinuate that we need to look beyond the scope of student us-
age of these concepts and examine deeper into how students
collect their understanding of these concepts. Their struggle in
composing mathematical sense by constructing a matrix equa-
tion and interpreting what each symbol represents correlate
to their understanding of matrix algebra and eigentheory in a
physics context. Our study of student understanding of matrix
algebra and eigentheory continues with more evaluations of
student written responses and revising ungraded quizzes that
gear towards mathematization and interpretation.

V. ACKNOWLEDGEMENTS

This research was supported in part by the National Sci-
ence Foundation under Grant Nos. PHY#1406035 and
PHY#1912660. The opinions, findings, and conclusions are
those of the author and do not reflect the view of NSF.

[1] C. Hillebrand-Viljoen and S. Wheaton, How students
apply linear algebra to quantum mechanics, 2018
Physics Education Research Conference Proceedings
10.1119/perc.2018.pr.hillebrand-viljoen (2019).

[2] M. Wawro, K. Watson, and W. Christensen, Meta-
representational competence with linear algebra in quantum
mechanics, in CERME 10 (Dublin, Ireland, 2017).

[3] M. S. Sabella and E. F. Redish, Student understanding of topics
in linear algebra (2002).

[4] D. Carlson, C. R. Johnson, D. C. Lay, and A. D. Porter, The
linear algebra curriculum study group recommendations for the
first course in linear algebra, The College Mathematics Journal
24, 41–46 (1993).

[5] C. LARSON and M. ZANDIEH, Three interpretations of the
matrix equation ax=b, For the Learning of Mathematics 33, 11

(2013).
[6] C. Andrews-Larson, Conceptualizing matrix multiplication: A

framework for student thinking, an historical analysis, and a
modeling perspective, ProQuest LLC (2010).

[7] F. Henderson, C. Rasmussen, M. Zandieh, M. Wawro, and
G. Sweeney, Symbol sense in linear algebra: A start toward eigen
theory (2010).

[8] M. Thomas and S. Stewart, Eigenvalues and eigenvectors: Em-
bodied, symbolic and formal thinking, Mathematics Education
Research Journal 23, 275 (2011).

[9] O. Uhden, R. Karam, M. Pietrocola, and G. Pospiech, Modelling
mathematical reasoning in physics education, Science Education
21 (2011).



168

Mass Distribution Comparison for GW190425

Author: Marc Daniell Penuliar
Advisor: Dr. Jocelyn Read
California State University, Fullerton
Department of Physics 

	 On August 17, 2017 the Laser Interferometer Gravitational-Wave Observatory (LIGO), and 
its European counterpart Virgo, detected the emission of gravitational waves from two neutron 
stars as they were orbiting and spiraling into each other. Neutron stars (NS) are some of the most 
dense and compact objects ever discovered. Mass measurements of galactic neutron stars show 
a range of values between roughly 1 and 2.5 times the mass of the sun, and the population was 
fit to a double gaussian distribution in Alsing et al 2018. Most are at roughly 1.4 solar masses 
(MØ) LIGO’s first detection of neutron stars also showed masses around 1.4 MØ. In 2019, LIGO 
discovered a second neutron star binary, GW190425 with a significantly larger total mass of 
about 3.4 MØ and mass of component neutron stars to be ranging from 1.12 MØ to 2.52 MØ. 
Here, we compare the range of masses compatible with this gravitational wave signal to a neutron 
star binary population generated following the galactic mass distribution of Alsing et al. This 
comparison suggests that, if the new binary comes from a population like we see in our galaxy, 
GW190425 had a larger mass ratio than suggested by gravitational wave data alone, with one 
component near the typical 1.4 MØ value and the other similar to the most massive neutron stars 
observed in our galaxy. Creating these joint plots opens the opportunity to compare our results of 
GW190425 quantitatively with the Alsing paper’s probability density. 
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1 Introduction

Highly reflective 1064nm mirrors are often used in experiments by the LIGO Scientific Col-
laboration and elsewhere. In Advanced LIGO, some optical setups such as the upper bread-
boards for the transmitted light monitors include such mirrors. While the transmission and 
reflectivity for these optics is readily available by vendor, scatter information is not. It is 
possible that there are wide variations in scatter between optics from different manufactur-
ers. Identifying the best ”off the shelf” optics (ie direct from manufacturer) for setups in 
which scattered light is critical could lead to improved optical performance. Here we look 
at the scatter versus angle of off the shelf 1064 nm laser mirrors from the vendors Newport, 
Thorlabs, and Edmunds Optics. We observed two things: i) the scatter from a majority of 
samples improved after cleaning with First Contact, indicating that they had arrived from 
the manufacturer with less than optimal cleaning and ii) after cleaning, the lowest scattering 
samples were from Newport, followed by Edmunds Optics.

2 Samples

Table 1 lists the mirrors measured in this study. There are six mirrors in total, two of 
the same type from Newport, two of the same type from Thorlabs, and two of differing 
types from Edmund Optics. All were purchased in June 2019. All of the optics have the 
same diameter and thickness. The information in this table and the subsections below was 
taken from the quotes and the company websites for each of these optics. Notably, scattered 
light specifications are not given. Because the Newport and Thorlabs samples are nominally 
identical, we will refer to their two samples as a and b.

Sample Qty. Coating and Substrate
Reflectivity
1064 nm

Surface
Flatness

Surface
Quality

Newport
10QM20HM.10

2
Dielectric coating on fused
silica (front)

Rs > 99.7%
Rp > 99%

λ
10

10-5

Thorlabs NB1-
K14

2
Dielectric coating on fused
silica (front)

Ravg > 99.8%
for 0◦ AOI

λ
10

10-5

Edmund 38905 1
Dielectric coating on fused
silica (front)

Rabs ≤ 99.8% λ
10

10-5

Edmund 89452 1
Dielectric coating on fused
silica (front)

99.5% for
S- and P-
polarization

λ
8

20-10

Table 1: Specifications from manufacturer for each optic. Surface flatness is typically speci-
fied at 632.8 nm. Note that most of these optics have nearly the same optical specifications.
However, optical scattering is not specified.

page 1
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2.1 Newport 10QM20HM.10

Figure 1: Left: Sample Newport 10QM20HM.10.a Right: Scatterometer image at θs =28◦.

The Newport mirrors have a ≥ 80% clear aperture with a 1064 nm highly reflective coating
Nd:YAG laser. It consists of a UV grade fused silica substrate with an ultra-hard dielectric
coating. The AOI is 0◦ with a reflectivity of 99.7% for S-polarization and 99% for P-
polarization. The surface flatness is λ

10
, with a 10-5 scratch-dig. Two of the same sample

were purchased to compared their similarities. Individually, they are sold for $258 on the 
Newport website, along with a more detailed list of specifications.

2.2 Thorlabs NB1-K14

Figure 2: Left: Sample Thorlabs NB1-K14. Right: Scatterometer image at θs =29◦.

The Thorlabs mirrors have a clear aperture of > 80%. The AOI is optimized from 0◦ to
45◦. The optic is coated with a -K14 dielectric coating to allow the reflectivity of 99.5% for
S- and P-polarization. It has a surface roughness (RMS) of < 2 Å and a surface quality of
10-5 scratch dig. The backside and barrel of the optic are not polished to diffuse scatter
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2.1 Newport 10QM20HM.10

Figure 1: Left: Sample Newport 10QM20HM.10.a Right: Scatterometer image at θs =28◦.

The Newport mirrors have a ≥ 80% clear aperture with a 1064 nm highly reflective coating
Nd:YAG laser. It consists of a UV grade fused silica substrate with an ultra-hard dielectric
coating. The AOI is 0◦ with a reflectivity of 99.7% for S-polarization and 99% for P-
polarization. The surface flatness is λ

10
, with a 10-5 scratch-dig. Two of the same sample

were purchased to compared their similarities. Individually, they are sold for $258 on the 
Newport website, along with a more detailed list of specifications.

2.2 Thorlabs NB1-K14

Figure 2: Left: Sample Thorlabs NB1-K14. Right: Scatterometer image at θs =29◦.

The Thorlabs mirrors have a clear aperture of > 80%. The AOI is optimized from 0◦ to
45◦. The optic is coated with a -K14 dielectric coating to allow the reflectivity of 99.5% for
S- and P-polarization. It has a surface roughness (RMS) of < 2 Å and a surface quality of
10-5 scratch dig. The backside and barrel of the optic are not polished to diffuse scatter
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from those surfaces. Two of the same sample were purchased as well, sold at $142 on the 
Thorlabs website.

2.3 Edmund Optics 89452 and 38905

Figure 3: Left: Sample Edmund 89452. Right: Scatterometer image at θs =28◦0.

Edmund 89452 has a clear aperture of 90%. It has a reflectivity of > 99.95% for both S-
and P-polarization of the 1064 nm laser and an AOI of 0◦. These mirrors use a fused silica
substrate with a dielectric coating on the front surface only, with a clear back surface. The
surface flatness is λ

8
with a surface quality of 20-10 scratch dig. It is sold for $159 on the

Edmund Optics website.

Figure 4: Left: Sample Edmund 38905. Right: Scatterometer image at θs =29◦.

Edmund 38905 has a clear aperture of 90%. The optic again uses a fused silica substrate
with a dielectric coating on the front surface and a commercial polish on the back surface. It
has a 99.8% reflectivity at the 1064 nm wavelength and an AOI from 0◦ to 45◦. The surface
flatness is λ

10
with a surface quality of 10-5 scratch dig. It is sold for $130 on the Edmund

Optics website.

page 3
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from those surfaces. Two of the same sample were purchased as well, sold at $142 on the 
Thorlabs website.

2.3 Edmund Optics 89452 and 38905

Figure 3: Left: Sample Edmund 89452. Right: Scatterometer image at θs =28◦0.

Edmund 89452 has a clear aperture of 90%. It has a reflectivity of > 99.95% for both S-
and P-polarization of the 1064 nm laser and an AOI of 0◦. These mirrors use a fused silica
substrate with a dielectric coating on the front surface only, with a clear back surface. The
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Figure 4: Left: Sample Edmund 38905. Right: Scatterometer image at θs =29◦.

Edmund 38905 has a clear aperture of 90%. The optic again uses a fused silica substrate
with a dielectric coating on the front surface and a commercial polish on the back surface. It
has a 99.8% reflectivity at the 1064 nm wavelength and an AOI from 0◦ to 45◦. The surface
flatness is λ

10
with a surface quality of 10-5 scratch dig. It is sold for $130 on the Edmund

Optics website.
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3 Scatterometer Setup

To determine the angle-resolved scattering of these samples we conducted experiments with 
the Fullerton Imaging Scatterometer [1, 2, 3], with the setup shown in Fig 5.

Figure 5: The Fullerton Imaging
Scatterometer diagram

A 1064 nm laser (Innolifht Mephisto S) is first chan-
neled through a 90:10 fiber optic cable beam split-
ter. The 90% portion of the beam is sent through
a reflective collimator, linear polarizer, and adjustable
iris. This beam is then positioned at near nor-
mal incidents to the center of the optic sample.
The other 10% is sent to an isolated power moni-
tor which records power throughout the duration of
the experiment. The 90% laser beam and optic are
mounted on a rotation stage. Reflected and transmit-
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set of ”bright images”. Next, the process is repeated, imaging from 0◦ to 80◦ in 1◦ increments
but now with the laser off, generating a set of ”dark images”. These dark images are then
subtracted out from the bright images to eliminate noise from the CCD chip and account
for any possible ambient light in the room.
Incident power, reflected power, and transmitted power are all recorded at the beginning and
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4 Cleaning Procedure

Mirrors were cleaned with Red First Contact from Photonic Cleaning Technologies follow-
ing protocol from LIGO’s cleaning procedure [4, 5, 6]. All cleaning and handleing of the 
optic takes place inside a softwall cleanroom. Since these are small optics (less than 2inch 
diameter), our lab utilized the pour and brush application protocol for First Contact alcohol-
polymer solution [5]. In this protocol the optic is laid horizontally on an optical mount and 
red first contact is poured in the center of the optic, then gently brushed/pulled to the edges 
using a brush applicator and the surface tension of the polymer solution. After a thick layer 
of first contact has been poured the solution is left to dry for at least one hour. A piece 
of first contact removal floss is next placed on top of the first layer of first contact along 
the outer edge of the optic, then a second layer of first contact is poured to secure the floss 
between the two layers. The second layer is left to dry for a minimum of 1 hour, though out 
of precaution the second layer is usually left to dry overnight. After the two layers have been 
left to dry for a sufficiently long time, removal is done following LIGO procedure [4]. A Top 
Gun Ionizing Air Gun System is used during the removal process to account for excess charge 
left on the optic due to the ionizing nature of the polymer solution. As per LIGO’s recom-
mendation, the top gun is always operated using research grade nitrogen which was selected 
for its efficiency in cleaning as well as its rapid decay of built up static charge [6]. As soon 
as the first contact layer is pulled away from the optic, another labmate immediately beings 
spraying the optics surface to reduce the static charge on the optic before it can attract new 
dust and/or other particulates. For optics of this size the top gun is held approximately 3 
inches away from the optics surface and sprayed sheer/parallel to the surface, at a pressure 
of 30psi [6].

5 Analysis

The Bidirectional Reflectance Distribution Function (BRDF) is used to quantify the reflected 
light from samples. BRDF is defined as the derivative of the scattered power, Ps, over the 
solid angle, Ωs, divided by the incident power, Pi, and the cosine of incident angle, θs, which 
is defined as the angle from the normal of the camera to the normal of the optics surface [7].

BRDF =
dPs/dΩs

Pi cos θs
=

Ps/Ωs

Pi cos θs
(1)

A region of interest or ROI is used to define the region of the CCD image that encompasses
significant scattered light and will be analyzed by the MatLab code. A CCD camera works by
counting the number of photons that each well in the 4096x4096 CCD chip inside the camera
housing. These counts encompassed by the ROI are summed together then normalized by
exposure time and incident power for each image. This value is multiplied by a calibration
factor determined at the time the system was set up. This value gives us a BRDF at the
moment the image was taken for the scatter encompassed in that ROI. Using a set of 6
concentric ROI’s with increasing diameter, the BRDF value for each ROI is calculated and
then fit to a linear function. The y-intercept of this linear function gives us the most accurate
value for the BRDF of the scattered light in our initial ROI.
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Total scattered light from an optic can be estimated by integrating a measurement of BRDF
multiplied by cos θs over the entire range of observed angles. The scattering over the az-
imuthal angles is assumed to be constant, so the integral is only taken over the incident
angle, θs. The resutling value is known as the total integrated scatter, or TIS, and is defined
as shown below [7].

TIS = 2π(cos θ1 − cos θ2)BRDF (θs) cos θs (2)

For this system, TIS is estimated by integrating BRDF from 0◦ to 80◦. TIS gives a good 
interpretation of the total scatter from a samples and is also often used to estimate rms 
surface roughness of a sample.

6 Results
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6.1 Scatter Results Pre Cleaning with First Contact Solution

3

Figure 6: Measured normalized scatter (BRDF) versus scattering angle θs =. These samples
were measured directly from the manufacturer without cleaning.

Figure 6 shows the comparative plot for the normalized scatter (BRDF) versus scattering
angle θs = of the samples before cleaning. Newport 10QM20HM.10 a had the lowest BRDF
and TIS values directly from the manufacturer. However, Newport 10QM20HM.10 b which is
meant to be near identical to Newport 10QM20HM.10 a, actually had the highest BRDF and
TIS values at this stage. Assuming the samples have similar manufacturing, this indicates
that there may be differing cleanliness between the two Newport samples. Edmunds 89452
had the second lowest BRDF and TIS values, followed by Edmunds 38905 as the third lowest.
Thorlabs NB1-K14 had the second highest BRDF and TIS values, and as stated previously,
Newport 10QM20HM.10 b had the highest overall BRDF and TIS values. While we did
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acquire two Thorlabs samples, only one Thorlabs mirror was analyzed before cleaning due 
to a miscommunication in the lab.

Further data and movies for these samples is available at this link: https://wiki.ligo. 
org/OPT/CSUFlog20190712.

6.2 Scatter Results Post Cleaning with First Contact Solution

3

Figure 7: Measured normalized scatter (BRDF) versus scattering angle θs =. These mea-
surements were taken after cleaning with first contact solution.

Figure 7 shows the comparative plot for the normalized scatter (BRDF) versus scattering
angle θs of the samples after cleaning with first contact solution. Newport 10QM20HM.10 a
exhibited a minor increase in TIS but overall was still found to have the lowest BRDF and
TIS values. Edmunds 89452 also exhibited a minor increase in TIS but was again found
to be the next lowest scattering sample. Thorlabs NB1-K14 a and Thorlabs NB1-K14 b
were the third lowest, with NB1-K14 a being slightly lower than NB1-K14 b. Newport
10QM20HM.10 b, which was initially the highest scattering sample, did decrease in scatter
slightly and was measured to be the second highest after cleaning. Edmunds 38905 increased
in scatter after cleaning and was now found to be the highest scattering sample.
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Sample Pre TIS (ppm) Post TIS (ppm) ∆ TIS
Newport
10QM20HM.10 a

31.8 88.5 +56.7

Newport
10QM20HM.10 b

1980 664 -1316

Thorlabs NB1-
K14 a

486* 164 -322

Thorlabs NB1-
K14 b

486* 227 -259

Edmund 38905 219 1090 +871
Edmund 89452 122 134 +12

Table 2: TIS values before and after cleaning for each sample as well as relative change. 
*Because Thorlabs NB1-K14 only had one sample analyzed before cleaning that value is 
being used as a pre TIS value for both a and b.

7 Conclusion

Overall Newport 10QM20HM.10 a was found to be the lowest scattering sample both be-fore 
and after cleaning. Contradictory, Newport 10QM20HM.10 b was found to be highest 
scattering sample before cleaning, and the second highest scattering sample after cleaning. 
Because of this we can say that the samples from Newport were found to have some of the 
largest variation amongst their samples. Thorlabs had the most consistent samples, having 
consistent decreases in TIS values and maintaining the same trend for BRDF both before 
and after cleaning. Edmunds 89452 had very little change in terms of TIS values, but did 
exhibit a noticeable change in the trend of the BRDF - smoothing out significantly after 
cleaning. Edmunds 38905 had a significant increase in TIS values but maintained the same 
BRDF trend before and after cleaning.

Directly from the manufacturer TIS values for these mirrors ranged between 30ppm and 
2000ppm with no clear dependence on vendors. Excluding Edmunds 89452 which had a 
TIS increase of only 12ppm, first contact cleaning improved the TIS of all but two samples, 
which were initially the lowest and second lowest scattering samples. The lowest scattering 
sample, Newport 10QM20HM.10 a, had TIS of 32ppm before cleaning and TIS increased 
to 89ppm after cleaning. The second lowest scattering sample, Edmunds 89452, had a TIS 
of 122ppm before cleaning and TIS increased to 134ppm after cleaning. From this we can 
say that in samples with TIS below approximately 150ppm, cleaning did not significantly 
improve scatter and may have actually contributed to increased scatter. After cleaning, TIS 
values range of 100 to 1000ppm, though it should be noted that four of the six samples were 
near or below 200ppm. In conclusion we can say that a majority of the samples improved 
after cleaning with most of the samples having a final TIS near or below 200ppm.

page 9

LIGO-T1900538–v1

Sample Pre TIS (ppm) Post TIS (ppm) ∆ TIS
Newport
10QM20HM.10 a

31.8 88.5 +56.7

Newport
10QM20HM.10 b

1980 664 -1316

Thorlabs NB1-
K14 a

486* 164 -322

Thorlabs NB1-
K14 b

486* 227 -259

Edmund 38905 219 1090 +871
Edmund 89452 122 134 +12

Table 2: TIS values before and after cleaning for each sample as well as relative change. 
*Because Thorlabs NB1-K14 only had one sample analyzed before cleaning that value is 
being used as a pre TIS value for both a and b.

7 Conclusion

Overall Newport 10QM20HM.10 a was found to be the lowest scattering sample both be-fore 
and after cleaning. Contradictory, Newport 10QM20HM.10 b was found to be highest 
scattering sample before cleaning, and the second highest scattering sample after cleaning. 
Because of this we can say that the samples from Newport were found to have some of the 
largest variation amongst their samples. Thorlabs had the most consistent samples, having 
consistent decreases in TIS values and maintaining the same trend for BRDF both before 
and after cleaning. Edmunds 89452 had very little change in terms of TIS values, but did 
exhibit a noticeable change in the trend of the BRDF - smoothing out significantly after 
cleaning. Edmunds 38905 had a significant increase in TIS values but maintained the same 
BRDF trend before and after cleaning.

Directly from the manufacturer TIS values for these mirrors ranged between 30ppm and 
2000ppm with no clear dependence on vendors. Excluding Edmunds 89452 which had a 
TIS increase of only 12ppm, first contact cleaning improved the TIS of all but two samples, 
which were initially the lowest and second lowest scattering samples. The lowest scattering 
sample, Newport 10QM20HM.10 a, had TIS of 32ppm before cleaning and TIS increased 
to 89ppm after cleaning. The second lowest scattering sample, Edmunds 89452, had a TIS 
of 122ppm before cleaning and TIS increased to 134ppm after cleaning. From this we can 
say that in samples with TIS below approximately 150ppm, cleaning did not significantly 
improve scatter and may have actually contributed to increased scatter. After cleaning, TIS 
values range of 100 to 1000ppm, though it should be noted that four of the six samples were 
near or below 200ppm. In conclusion we can say that a majority of the samples improved 
after cleaning with most of the samples having a final TIS near or below 200ppm.

page 9



179

LIGO-T1900538–v1

Acknowledgements

Daniel Martinez was supported by NSF grant number 1559694. This work was further 
supported by NSF awards 1836734 and 1807069 and by the Dan Black Family Trust.

References

[1] Fabian Magana-Sandoval, Rana X. Adhikari, Valera Frolov, Jan Harms, Jacqueline Lee,
Shannon Sankar, Peter R. Saulson, and Joshua R. Smith. Large-angle scattered light mea-
surements for quantum-noise filter cavity design studies. J. Opt. Soc. Am. A, 29(8):1722–
1727, Aug 2012.

[2] Cinthia Padilla, Fabian Magaa-Sandoval, Erik Muniz, Joshua R. Smith, Peter Fritschel,
and Liyuan Zhang. Low scatter and ultra-low reflectivity measured in a fused silica
window. Appl. Opt., 53:1315, 2014.

[3] Daniel Vander-Hyde, Claude Amra, Michel Lequime, Fabian Magana-Sandoval, Joshua R
Smith, and Myriam Zerrad. Optical scatter of quantum noise filter cavity optics. Classical
and Quantum Gravity, 32(13):135019, 2015.

[4] Kate Gushwa and Calum Torrie. First contact spray application removal procedure.
Technical report, LIGO, 2018.

[5] Margot Phelps, GariLynn Billingsley, Liyuan Zhang, Calum Torrie, and Charlie Taylor.
First contact pour and brush application. Technical report, LIGO, 2018.

[6] Calum Torrie, GariLynn Billingsley, Eddie Sanchez, Bob Taylor, and Margot Phelps.
Guidance on top gun ionizing air gun system - from gas to gun. Technical report, LIGO,
2015.

[7] J. C. Stover. Optical Scattering. SPIE Press, 3rd edition, 2012.

page 10



180

Calculating apparent-horizon quantities with SpECTRE, a next-
generation numerical relativity code

Authors: Marlo Morales
Advisor: Dr. Geoffrey Lovelace	  
California State University, Fullerton
Department of Physics 

Abstract 

	 SpECTRE is a next-generation numerical-relativity code (currently under 
development) that will calculate the gravitational waves emitted by colliding black 
holes with unprecedented accuracy, by using novel techniques that enable it to scale to 
hundreds of thousands of compute cores. These high-accuracy calculations will help 
scientists interpret observations from next-generation gravitational-wave detectors. My 
research involves the completion of SpECTRE’s computational infrastructure to measure 
the properties of black hole’s horizons, such as the black hole’s masses and spin angular 
momenta, which are especially important for connecting the calculations to observations. 
Then, I assess the accuracy that SpECTRE is able to achieve and compare the results to 
those from the Spectral Einstein Code (SpEC), a current-generation code. 



Authors & Editors



182

Dimensions Editors

Melissa Fernandez (Section Editor)
Melissa Fernandez is currently a Junior at Cal State Fullerton and is majoring in Biological  
science, with a concentration in Cellular and Developmental Biology. She is a dedicated 
member of Dr. Shahrestani’s Evolutionary and Genomics Research (EAGR) Lab, where 
she works with the rest of her team to establish Drosophila melanogaster as a model 
organism for the antibiotic resistance pathogen, Acinetobacter baumannii.  She is a board 
member for AMSA and the editor for the Biology section of Dimensions. In her free time, 
she advocates for mental health awareness as a Robbie’s Hope Organization ambassador. 
After graduation, she plans on earning her master’s degree before pursuing a lifelong 
career as a doctor in the medical field. 

Sherif Ibraheem (Layout Editor)
Sherif Ibraheem is a first-year undergraduate student at California State 
University, Fullerton. He is majoring in Biology and working towards his 
Bachelor’s Degree. One of his favorite hobbies is graphic designing. He is 
experienced working with professional designing softwares like Adobe Programs. 
His skills got him hired for the layout editor position for Dimensions 2021. After 
graduation, he wants to further his education and get into medical school.  In the 
future, he plans to pursue a career in the medical field.

Madeline Ceccia (Section Editor)
Madeline Ceccia is a senior majoring in applied mathematics with a concentration 
in modeling and computation. Under the mentorship of Dr. Martin Bonsangue, 
Madeline investigates the numerical negative space within the distinguished 
Fibonacci Sequence. She is passionately curious and inspired by the vast mysteries 
of the universe. Madeline was titled a NASA Community College Aerospace 
Scholar in 2018, and aspires to work for a space agency once she graduates in 
2021.

Krisha Marie Uy (Section Editor)
Krisha Marie Uy is a first-year biology major at California State University, 
Fullerton (CSUF) and plans to pursue a concentration in Molecular Biology and 
Biotechnology. She is a part of the President’s Scholars Program and University 
Honors Program on campus. Upon graduating, Krisha wants to further her 
education by attending medical school as she aspires to become a pediatrician or 
pediatric surgeon in the future.

Sonali Vyas (Editor-In-Chief)
Sonali Vyas is a sixth year Applied Mathematics and English Major. She is 
wrapping up a new research project in which she applies machine learning to 
predict murder mystery novels. Sonali is in the process of applying to graduate 
school and hopes to earn a PhD in Applied Mathematics. 



182 183

Anny Antunovich (Section Editor)
Anny Antunovich is a senior-level undergraduate student at Cal State Fullerton 
studying Physics. With the mentorship of Dr. Jocelyn Read in the Physics 
Department, Anny is working on astrophysical research with the Gravitational 
Waves Physics and Astronomy Center on campus. In the fall, she plans to further 
her education by pursuing a Master’s degree in Astrophysics and Cosmology 
abroad. 

Jessica Sherman (Section Editor)
Jessica Sherman graduated from California State University, Fullerton with a 
bachelor’s degree in Biological Sciences with a concentration in Molecular and 
Biotechnology and a minor in Psychology. She is currently working towards her 
certification as a certified nurse assistant and set to leave on a medical mission in 
Kenya. She hopes to gain a different perspective of medicine in another country 
and help better prepare her for her future career as a travel Physician Assistant.

Mykayla Miller (Section Editor)
Mykayla Miller is an honors student majoring in Biochemistry. She is a McNair 
scholar at California State University, Fullerton. She has recently began working 
under Dr. Marcos Ortega in studying how to inhibit androgen receptors and lysine 
demethylase I using a molecule called sangaurine.

Mayra Silva (Section Editor)
Mayra Silva is a graduating Senior Majoring in biology and concentrating in 
ecology and evolutionary biology. She is a Scholar apart of the Southern California 
Ecosystems Research Program and conducts oyster conservation research with 
the Zacherl Lab. “This is my second year editing for Dimensions and it has been a 
blast! Thank you so much for the opportunity and the experience!”



184

Authors

Akçiz, Sinan   
Dr. Sinan Akçiz is an Assistant Professor of Geology at California State University, 
Fullerton. Sinan’s research areas include paleoseismology, geomorphology, 
Quaternary geochronology, structural geology, and geoscience education.

Albakri, Salma 
Salma Albakri is a third-year undergraduate majoring in Mathematics with a 
Teaching Concentration at California State University, Fullerton. She plans to 
graduate in May 2022 and enroll in a credential program for the following fall 
semester. Her future career goals include becoming a high school mathematics 
teacher teaching subjects such as AP Statistics. 

Alonso, Gustavo Sopena  
Gustavo Sopena Alonso is a first year graduate student in the applied mathematics 
program at California State University, Fullerton (CSUF). He received his bachelor’s 
degree in applied mathematics from CSUF in May 2020. His current research 
involves exploring Peg Solitaire’s various game boards and generalizing the game to 
consider the use of colors. He is interested in modeling the disease dynamics among 
bird and human populations as well as employing a game-theoretic approach to 
studying the disease life cycle.

Anderson , Holly 
Holly Anderson is an undergraduate junior at Cal State Fullerton. She is currently 
pursuing a bachelor’s degree in mathematics with a concentration in teaching. 
After she graduates, she hopes to either obtain her teaching credential and become 
a high school mathematics teacher or pursue higher education and become a 
college professor. 

Andrews, Summer 
Summer Andrews is a graduate student majoring in Mathematics with a Teaching 
concentration and will earn her Master’s degree from Cal State Fullerton in May 
2021. She is also a Teacher’s Associate teaching undergraduate mathematics 
courses at Cal State Fullerton. Upon graduation, she hopes to continue on with 
her passion of teaching mathematics and pursue a faculty position at a college or 
university.
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Arreola, Seth
Seth Arreola recently received his Bachelor’s degree in Mathematics, with a 
concentration in probability and statistics, in January 2021 from California 
State University, Fullerton. Seth worked with the modeling and analysis of data, 
including COVID-19 infection and mobility data under the guidance of Dr. 
Behseta. He plans on continuing his education with the pursuit of a Master’s 
degree in Statistics. 

Bursztyn, Natalie   
Dr. Natalie Bursztyn is a Physical Sciences Tutor of Geology at Quest University 
Canada, as well as a former Assistant Professor of Geology at California State 
University, Fullerton. Natalie is primarily interested in college-level geoscience 
education research, including the integration of new technologies in the classroom 
to provide interactive learning experiences.

Cabrera, Juan  
Juan Cabrera majored in mathematics with a focus on probability and statistics. 
His research interest includes data mining, data visualization, machine learning, 
neural networks, and deep learning. He will begin a master’s degree at CSUF in the 
fall of 2020. Juan is a first-generation college student. His future plans are to finish 
his graduate studies and begin a career in data science and teaching.

Carrilo, Heather   
Heather Carrilo is a Biochemistry major and plans to work in the laboratory 
industry. Her career goal is to work in a crime lab for the county.

Ceccia, Madeline
Madeline Ceccia is a senior majoring in applied mathematics with a 
concentrationin modeling and computation. Under the mentorship of Dr. Martin 
Bonsangue, Madeline investigates the numerical negative space within the 
distinguished Fibonacci Sequence. She is passionately curious and inspired by the 
vast mysteries of the universe. Madeline was titled a NASA Community College 
Aerospace Scholar in 2018, and aspires to work for a space agency once she 
graduates in 2021.
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Cugini, Brandon   
Brandon Cugini is a graduating senior for the Summer 2021 semester with a 
major focus in Geology, and a minor in Geography. In addition, he is a member 
of the University Honors Program where he did his undergraduate thesis research 
in conjunction with his senior honors project. The thesis focused on using 
high resolution LiDAR images to take measurements of horizontal slippage of 
a segment of the Lavic Lake Fault, which was responsible for the Hector Mine 
Earthquake of 1999.

Culleton, Andrew
Andrew Culleton is a senior at California State University Fullerton, majoring 
in geological sciences. He is doing research with Dr. Valbone Memeti on the 
petrologic evolution of magma systems. After graduating, Andrew plans to start a 
career in the environmental consulting industry and work towards obtaining his 
Professional Geologist license.

Fung, Andy   
Anderson Fung is an undergraduate physics major working in the physics 
education research group. His current project involves the improvement of 
ordinary differential equations (O.D.E.s) instruction in the department’s math 
methods course (PHYS 300). He is in the final year of his undergraduate degree 
and intends to continue his involvement with the physics department as a 
graduate student.  

Gamez, Christine  
Christine Gamez is a senior pursuing a Bachelor of Arts degree in Mathematics 
with a concentration in teaching. She is currently doing research with Dr. 
Alison Marzocchi on gender representation in mathematics textbooks and is 
also on the executive council of her panhellenic sorority, Zeta Tau Alpha. After 
graduation, she will pursue her teaching credential and hopes to teach high school 
mathematics to at-risk youth.

Gutierrez, Joseph   
Joseph Gutierrez is graduate student and teaching associate in the Department of 
Geological Sciences. His research focuses on educational materials assessment, 
with an emphasis on spatial visualization training in the geosciences. Having 
recently defended his thesis, Joseph will soon graduate with his M.S. in Geology, 
with plans to continue a career in geoscience education.
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Her, Pachi
Pachi Her is the author of “Examining Student Understanding of Matrix Algebra 
and Eigentheory.”

Huang, Solomon  
Solomon Huang is a mathematics student at California State University, Fullerton. 
He is currently working on two research projects with Drs. Casper and Murphy. 
After graduation, Solomon plans to pursue a graduate degree to achieve his goal of 
teaching mathematics at the college/university level.

Jimenez, Jose Luis Gonzalez
Jose Luis Gonzalez Jimenez is an undergraduate majoring in chemistry at California State 
University, Fullerton. He is currently a junior working toward his bachelor degree. He is in 
his third semester of being a part of Dr. Fry-Petit research lab.  

Kumar, Sushanth Sathish  
Sushanth Sathish Kumar is a high school student at Portola High school who 
is very passionate about math. He enjoys learning about new math and solving 
problems in math journals such as the American Math Monthly, and the College 
Math Journal. He also enjoys math classes and loves to look beyond the traditional 
math taught in schools. In his free time, he watches anime and youtubers such as 
Vsauce. 

Lind, Gwendolyn   
Gwendolyn Lind is graduating in Mathematics with a concentration in Probability and 
Statistics in Spring 2021 and plans to continue at Cal State Fullerton to obtain a Master’s 
of Science Degree in Statistics. As a BD3-REAP scholar, Gwen has participated in 
numerous public health research projects and presented her findings at the University 
of Southern California (Neuroimaging and Informatics) and the SACNAS Conference 
in Honolulu, Hawaii. Currently, she is managing a new team of scholars to continue last 
semesters CSUF COVID-19 research project by updating the existing statistical models 
and adding new data associated with the number of vaccines.
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Lopez, Saul 
Saul Lopez graduated from CSU Fullerton with BA in applied mathematics and 
graduated from the mathematics master’s program with emphasis in teaching this 
past January. Saul was an Instructional Assistance for four years in the Math Study 
Hall at Santiago Canyon College. During his graduate studies Saul was a Teaching 
Assistant, TA, where he taught College Algebra and Pre-Calculus. Currently he is 
teaching mathematics for the Continuing Education program at Santiago Canyon 
College and Santiago Canyon College.

Martinez, Daniel    
Daniel Martinez is an undergraduate studying physics. He transferred from Citrus 
College in 2020 after participating in a summer research program with GWPAC. 
After completing the summer project he wanted to return to continue working 
on research and take the courses CSUF provided. He has been a research assistant 
in Dr. Smith’s GWPAC lab for the entirety of the 2020-2021 school year. After 
graduation he plans to attend graduate school to further his physics education.

Morales, Marlo 
Marlo Morales is a junior physics student at California State University, Fullerton. Marlo is a 
currently working at CSUF’s own Nicholas and Lee Begovich Center for Gravitational-Wave 
Physics and Astronomy, also known as GWPAC in Dr. Geoffrey Lovelace’s numerical relativity 
group. His research involves contributing code that will be used to study the properties of 
extreme spacetime through numerical relativity research. His work will add new capabilities 
necessary to measure the properties of the black holes’ horizon such as their surface areas 
and the measures of mass and spin angular momenta. His career goal is to pursue a Ph.D. in 
gravitational waves physics to contribute to the understanding of general relativity and the 
properties of Einstein’s equation. 

Nguyen, Duy   
Duy Nguyen graduated with a Master’s degree in Applied Mathematics at 
California State University of Fullerton. His goals are becoming a Modelling and 
Simulation engineer and a Math professor at a community college. Currently, 
he is a teaching intern at Goldenwest College, and plans to apply for a part-time 
teaching job after his internship. 

Nichols, Kevin
Dr. Kevin Nichols is an Associate Professor of Mathematics at California State 
University, Fullerton. Kevin’s research interests are spatial / temporal statistics and 
their applications to earthquake and wildfire data.
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Nonora, Jesi
Jesi Nonora is an undergraduate research student pursuing a B.S. in Biological 
Science with a concentration in ecology and evolutionary biology. She is working 
under Dr. Paul Stapp to better understand coyote diet in rural areas of California 
and the comparability of different diet analysis techniques. After graduation, 
she plans to attend graduate school to continue her education and research on 
California wildlife.

Peña, Caleb
Caleb Peña graduated from Cal State Fullerton in 2020 with a bachelor’s degree 
in Mathematics: Probability and Statistics. His interests include causal inference, 
data visualization, and sports analytics. He recently concluded an internship with 
the Seattle Kraken building models in anticipation of the upcoming draft. This 
fall, he plans to begin pursuing a Masters of Statistical Practice at Carnegie Mellon 
University.

Penuliar, Marc Daniell   
Marc Penuliar is working on his B.S. in Physics and Minor in Mathematics at 
California State University, Fullerton (CSUF). His research work with advisor 
Dr. Jocelyn Read is carried out within the scientific collaboration of the Laser 
Interferometer Gravitational-Wave Observatory (LIGO), as a member of CSUF’s 
Nick and Lee Begovich Center for Gravitational Wave Physics and Astronomy. 
With plans to graduate in the year 2022 and enter graduate school with physics or 
astronomy with the goal of a career in either astronomy or in industry. 

Pilker, Matthew  
Matthew Pilker is graduating magna cum laude with his Bachelor of Science in 
Geology. He completed his bachelor’s thesis/honors project with Dr. Jeffrey R. 
Knott, worked as a Research/Field Assistant and Supplemental Instruction Leader 
for the Department of Geological Sciences, and served on Interclub Council for 
the College of Natural Sciences and Mathematics. Upon graduating, he will pursue 
his Master of Science from CSUF while continuing to work in environmental 
consulting.

Rhee, Chloe 
Chloe Rhee is a third-year student at Cal State Fullerton, majoring in Mathematics 
with a concentration in Teaching. Chloe holds an executive position with SMART 
GIRLS. After graduation, she plans on getting her Masters and teaching credential. 
She plans on pursuing a career as a high school Math teacher.
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Roque, Theodore   
Theodore Roque was born and raised in Los Angeles county. He obtained his 
undergraduate degree in electrical engineering in 2013 and worked in the 
telecommunications industry for a few years before deciding to pursue a career in 
medicine. He completed the pre-health post-baccalaureate program at CSUF in 
2019 and is working to enter medical school within the next few years.

Salvador, Stephanie Mariel
Stephanie is in her 4th year majoring in Biochemistry and a part of the University’s Honors 
Program. While being a full time student, she also works part time as a secretary at her local 
church and as a volunteer for PIH Health Hospital in the Pathology Lab and Hospice Center. Since 
her freshmen year at CSUF, she always had a strong interest working in a lab whether it is in the 
medical field or the pharmaceutical industry. On her free time, she enjoys eating out with family 
and friends, walking her dog, shopping, hiking, playing with her ukulele, watching Forensic Files 
or any comedy sketch, working out, and yoga. Stephanie’s research under the guidance of Dr. Pecic 
has deepen her knowledge of biochemistry as well as grow her skill set for the laboratory field and 
graduate school.

Solomatov, Aleksei  
Aleksei Solomatov is an undergraduate majoring in biochemistry at CSUF. He is 
a full-time student on campus but at the same time working towards getting his 
pharmacy technician license to begin his career in the pharmacy field. His goal is 
to work as a clinical pharmacist in order to help patients and to work directly with 
other medical professionals. Aleksei joined Dr. Pecic’s research lab to gain a further 
understanding of medicinal chemistry and drug design.  

Slaven, Elijah
Elijah Slaven graduated from California State University, Fullerton as a biology 
major with a minor in chemistry. Working in Dr. Abraham’s lab, he helped 
demonstrate the importance of environmental research and how we can impact 
and improve our communities. Shortly, he will be attending nursing school, where 
he plans to use these experiences to help improve his community with the aid of 
fellow healthcare providers.

Spalding, Leah
Leah Spalding is pursuing a Bachelor’s of Science degree in Ecology and 
Evolutionary Biology at Cal State Fullerton. As an undergraduate researcher in Dr. 
Parvin Shahrestani’s lab, she studies the gut microbiome within experimentally-
evolved populations of the common fruit fly, Drosophila melanogaster. Following 
graduation in Fall 2020, she plans to pursue a graduate degree in ecology and 
evolutionary biology.
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Tomich, Brandon  
Brandon Tomich is a soon-to-be graduate with a Computer Science major at 
California State University, Fullerton. His interests include data science and 
machine learning and he is looking for a career in areas such as image processing 
and audio analysis. In terms of the future, Brandon is looking to further specialize 
his skills by attending graduate school.

Weaver, Tuesday
Tuesday Danielle is a Plant Science major with a minor in Anthropology, who 
completed her research with Dr. Der lab. Her main interests are in medicinal 
ethnobotany and horticulture. Tuesday spends her time reading historical non-
fiction, brewing kombucha, and tending to her plant props. She plans to attend 
grad school soon, and is working towards becoming a horticulturalist at a 
commercial greenhouse. 

Valenzuela, Alexander 
Alexander Valenzuela is a senior at California State University, Fullerton expecting 
to graduate in the summer of 2021 with a Bachelor of Science Degree in Geological 
Sciences. He is currently working with Dr. Vali Memeti to research the concentric 
pattern of the Box Springs pluton in Riverside, California. Alex looks forward to 
graduating so he can join the workforce and pursue a career in geology.




